|
[1]
|
Wiersig, J. (2014) Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection. Physical Review Letters, 112, Article ID: 203901. [Google Scholar] [CrossRef]
|
|
[2]
|
Chen, P.-Y. and Jung, J. (2016) PT-Symmetry and Singularity-Enhanced Sensing Based on Photoexcited Graphene Metasurfaces. Physical Review Applied, 5, Article ID: 064018. [Google Scholar] [CrossRef]
|
|
[3]
|
Lin, Z., Pick, A., Lončar, M. and Rodri-guez, A.W. (2016) Enhanced Spontaneous Emission at Third-Order Dirac Exceptional Points in Inverse-Designed Photonic Crystals. Physical Review Letters, 117, Article ID: 107402. [Google Scholar] [CrossRef]
|
|
[4]
|
Hodaei, H., Hassan, A.U., Wittek, S., Garcia-Gracia, H., El-Ganainy, R., Christodoulides, D.N. and Khajavikhan, M. (2017) Enhanced Sensitivity at Higher-Order Excep-tional Points. Nature, 548, 187-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, W., Özdemir, Ş.K., Zhao, G., Wiersig, J. and Yang, L. (2017) Exceptional Points Enhance Sensing in an Optical Microcavity. Nature, 548, 192-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Heiss, W.D. (2012) The Physics of Exceptional Points. Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 444016. [Google Scholar] [CrossRef]
|
|
[7]
|
Yin, C., Jiang, H., Li, L., et al. (2018) Geometrical Meaning of Winding Number and Its Characterization of Topological Phases in One-Dimensional Chiral Non-Hermitian Systems. Physical Review A, 97, Article ID: 052115. [Google Scholar] [CrossRef]
|
|
[8]
|
Leykam, D., Bliokh, K.Y., Huang, C., et al. (2017) Edge Modes, Degeneracies, and Topological Numbers in Non- Hermitian Systems. Physical Review Letters, 118, Article ID: 040401. [Google Scholar] [CrossRef]
|
|
[9]
|
Jing, D.Y., Wang, H.Y. and Liu, W.M. (2022) Topo-logical Transition and Majorana Zero Modes in 2D Non-Hermitian Chiral Superconductor with Anisotropy. Journal of Physics: Condensed Matter, 34, Article ID: 195401. [Google Scholar] [CrossRef]
|
|
[10]
|
Jin, L. and Song, Z. (2019) Bulk-Boundary Correspondence in a Non-Hermitian System in One Dimension with Chiral Inversion Symmetry. Physical Review B, 99, Article ID: 081103. [Google Scholar] [CrossRef]
|
|
[11]
|
Lü, H., Wang, C., Yang, L., et al. (2018) Opto-mechanically Induced Transparency at Exceptional Points. Physical Review Applied, 10, Article ID: 014006. [Google Scholar] [CrossRef]
|
|
[12]
|
Wang, C., Jiang, X., Zhao, G., et al. (2020) Elec-tromagnetically Induced Transparency at a Chiral Exceptional Point. Nature Physics, 16, 334-340. [Google Scholar] [CrossRef]
|
|
[13]
|
Zhang, H., Saif, F., Jiao, Y., et al. (2018) Loss-Induced Transparency in Optomechanics. Optics Express, 26, 25199- 25210. [Google Scholar] [CrossRef]
|
|
[14]
|
Smith, D.D., Chang, H., Fuller, K.A., et al. (2004) Cou-pled-Resonator-Induced Transparency. Physical Review A, 69, Article ID: 063804. [Google Scholar] [CrossRef]
|
|
[15]
|
Qin, H., Ding, M. and Yin, Y. (2020) Induced Transpar-ency with Optical Cavities. Advanced Photonics Research, 1, Article ID: 2000009. [Google Scholar] [CrossRef]
|
|
[16]
|
Huang, Y., Shen, Y., Min, C., et al. (2017) Unidirectional Re-flectionless Light Propagation at Exceptional Points. Nanophotonics, 6, 977-996. [Google Scholar] [CrossRef]
|
|
[17]
|
An, S., Liu, T., Liang, S., et al. (2021) Unidirectional Invisi-bility of an Acoustic Multilayered Medium with Parity- Time-Symmetric Impedance Modulation. Journal of Applied Physics, 129, Article ID: 175106. [Google Scholar] [CrossRef]
|
|
[18]
|
Rudnik, V.E., Ufa, R.A. and Malkova, Y.Y. (2022) Analysis of Low-Frequency Oscillation in Power System with Renewable Energy Sources. Energy Reports, 8, 394-405. [Google Scholar] [CrossRef]
|
|
[19]
|
Valle, D.B. and Araujo, P.B. (2015) The Influence of GUPFC FACTS Device on Small Signal Stability of the Electrical Power Systems. International Journal of Electrical Power & Energy Systems, 65, 299-306. [Google Scholar] [CrossRef]
|
|
[20]
|
Kishor, N., Haarla, L., Seppänen, J., et al. (2013) Fixed-Order Controller for Reduced-Order Model for Damping of Power Oscillation in Wide Area Network. In-ternational Journal of Electrical Power & Energy Systems, 53, 719-732. [Google Scholar] [CrossRef]
|
|
[21]
|
Balasiu, F., Lazar, F.M. and Balaurescu, R. (2009) Defense Plan against Major Disturbances of the Romanian EPS. 2009 IEEE Power & Energy Society General Meeting, Calgary, 26-30 July 2009, 1-7. [Google Scholar] [CrossRef]
|
|
[22]
|
Wagner, M., Ivleva, N.P., Haisch, C., et al. (2009) Combined Use of Confocal Laser Scanning Microscopy (CLSM) and Raman Microscopy (RM): Investigations on EPS-Matrix. Water Research, 43, 63-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kang, Y., Zhou, X.E., Gao, X., et al. (2015) Crystal Struc-ture of Rhodopsin Bound to Arrestin by Femtosecond X-Ray Laser. Nature, 523, 561-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Schaffler, K., Nicolas, L.B., Borta, A., et al. (2017) Investigation of the Predictive Validity of Laser-EPs in Normal, UVB-Inflamed and Capsaicin-Irritated Skin with Four Analgesic Compounds in Healthy Volunteers. British Journal of Clinical Pharmacology, 83, 1424-1435. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hassan, A.N., Frank, J.F. and Qvist, K.B. (2002) Direct Observation of Bacterial Exopolysaccharides in Dairy Products Using Confocal Scanning Laser Microscopy. Journal of Dairy Science, 85, 1705-1708. [Google Scholar] [CrossRef]
|
|
[26]
|
Longhi, S. (2010) Backward Lasing Yields a Perfect Absorber. Physics, 3, 61. [Google Scholar] [CrossRef]
|
|
[27]
|
Sun, Y., Tan, W., Li, H., et al. (2014) Experimental Demonstration of a Coherent Perfect Absorber with PT Phase Transition. Physical Review Letters, 112, Article ID: 143903. [Google Scholar] [CrossRef]
|
|
[28]
|
Pu, M., Feng, Q., Hu, C. and Luo, X. (2012) Perfect Absorption of Light by Coherently Induced Plasmon Hybridization in Ultrathin Metamaterial Film. Plasmonics, 7, 733-738. [Google Scholar] [CrossRef]
|
|
[29]
|
Niesler, F.B.P., Gansel, J.K., Fischbach, S. and Wegener, M. (2012) Metamaterial Metal-Based Bolometers. Applied Physics Letters, 100, Article ID: 203508. [Google Scholar] [CrossRef]
|
|
[30]
|
Alves, F., Kearney, B., Grbovic, D. and Karunasiri, G. (2012) Narrowband Terahertz Emitters Using Metamaterial Films. Optics Express, 20, 21025-21032. [Google Scholar] [CrossRef]
|
|
[31]
|
Alves, F., Grbovic, D., Kearney, B., Lavrik, N.V. and Karunasiri, G. (2013) Bi-Material Terahertz Sensors Using Metamaterial Structures. Optics Express, 21, 13256-13271. [Google Scholar] [CrossRef]
|
|
[32]
|
Kang, M., Liu, F. and Li, J. (2013) Effective Spontaneous PT-Symmetry Breaking in Hybridized Metamaterials. Physical Review A, 87, Article ID: 053824. [Google Scholar] [CrossRef]
|
|
[33]
|
Baviskar, J., Mulla, A., Baviskar, A., et al. (2016) Met-amaterial Lens Incorporated Enhanced Gain Omnidirectional Conformal Patch Antenna. 2016 IEEE Aerospace Conference, Big Sky, 5-12 March 2016, 1-7. [Google Scholar] [CrossRef]
|
|
[34]
|
Mavidis, C.P., Tasolamprou, A.C., Economou, E.N., et al. (2020) Polaritonic Cylinders as Multifunctional Metamaterials: Single Scattering and Effective Medium Description. Physical Review B, 102, Article ID: 155310. [Google Scholar] [CrossRef]
|
|
[35]
|
Jackson Jr., C., Reynolds, P.J. and Lindahl, I.L. (1975) Effect of Cyclophosphamide on Erythrocyte and Plasma Acetycholinesterase Activity in Sheep. Journal of Animal Science, 41, 1390-1393. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Grossherr, M., Hengstenberg, A., Meier, T., et al. (2006) Discontinuous Monitoring of Propofol Concentrations in Expired Alveolar Gas and in Arterial and Venous Plasma during Artificial Ventilation. The Journal of the American Society of Anesthesiologists, 104, 786-790. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Spence, J.D., Malinow, M.R., Barnett, P.A., et al. (1999) Plasma Homocyst (e)ine Concentration, but Not MTHFR Genotype, Is Associated with Variation in Carotid Plaque Area. Stroke, 30, 969-973. [Google Scholar] [CrossRef]
|
|
[38]
|
Luo, X., Cheng, Z.Q., Zhai, X., et al. (2019) A Tunable Du-al-Band and Polarization-Insensitive Coherent Perfect Absorber Based on Double-Layers Graphene Hybrid Waveguide. Nanoscale Research Letters, 14, Article No. 337. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sun, W., Wu, T., Wang, L., et al. (2019) The Role of Gra-phene Loading on the Corrosion-Promotion Activity of Graphene/Epoxy Nanocomposite Coatings. Composites Part B: Engineering, 173, Article ID: 106916. [Google Scholar] [CrossRef]
|
|
[40]
|
Ning, Y., Dong, Z., Si, J., et al. (2017) Tunable Po-larization-Independent Coherent Perfect Absorber Based on a Metal-Graphene Nanostructure. Optics Express, 25, 32467-32474. [Google Scholar] [CrossRef]
|
|
[41]
|
Ding, J., Zhao, H. and Yu, H. (2020) Superior to Graphene: Super-Anticorrosive Natural Mica Nanosheets. Nanoscale, 12, 16253-16261. [Google Scholar] [CrossRef]
|
|
[42]
|
Limpert, J., et al. (2004) All Fiber CPA System Based on Air-Guiding Photonic Bandgap Fiber Compressor. Conference on Lasers and Electro-Optics, San Francisco, 16-21 May 2004, 2.
|
|
[43]
|
Sobon, G., Klimczak, M., Sotor, J., et al. (2014) Infrared Supercontinuum Generation in Soft-Glass Photonic Crystal Fibers Pumped at 1560 nm. Optical Materials Express, 4, 7-15. [Google Scholar] [CrossRef]
|
|
[44]
|
Ogino, J., Sueda, K., Kurita, T., et al. (2013) Development of High-Energy Fiber CPA System. EPJ Web of Conferences, 59, Article No. 07004. [Google Scholar] [CrossRef]
|
|
[45]
|
Wang, H., Kong, W., Zhang, P., et al. (2019) Coherent Perfect Absorption Laser Points in One-Dimensional Anti-Parity- Time-Symmetric Photonic Crystals. Applied Sci-ences, 9, Article No. 2738. [Google Scholar] [CrossRef]
|
|
[46]
|
Ni, H., Zhou, G., Chen, X., et al. (2023) Non-Reciprocal Spatial and Quasi-Reciprocal Angular Goos-Hänchen Shifts around Double CPA-LPs in PT-Symmetric Thue-Morse Photonic Crystals. Optics Express, 31, 1234-1248. [Google Scholar] [CrossRef]
|