|
[1]
|
Moon, S.Y., Park, Y.B., Kim, D.S., Oh, S.K. and Kim, D.-W. (2006) Generation, Culture, and Differentiation of Human Embryonic Stem Cells for Therapeutic Applications. Molecular Therapy, 13, 5-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Vining, K.H. and Mooney, D.J. (2017) Mechanical Forces Direct Stem Cell Behaviour in Development and Regeneration. Nature Reviews Molecular Cell Biology, 18, 728-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kasoju, N., Wang, H., Zhang, B., George, J., Gao, S., Triffitt, J.T., Cui, Z. and Ye, H. (2017) Transcriptomics of Human Multipotent Mesenchymal Stromal Cells: Retrospective Analysis and Future Prospects. Biotechnology Advances, 35, 407-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Packer, M. (2018) The Alchemist’s Nightmare: Might Mes-enchymal Stem Cells That Are Recruited to Repair the Injured Heart Be Transformed into Fibroblasts Rather than Car-diomyocytes? Circulation, 137, 2068-2073. [Google Scholar] [CrossRef]
|
|
[5]
|
Jadalannagari, S. and Aljitawi, O.S. (2015) Ecto-dermal Differentiation of Wharton’s Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications. Tissue Engineering Part B: Reviews, 21, 314-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Galiè, M., Konstantinidou, G., Peroni, D., Scambi, I., Marchini, C., Lisi, V., Krampera, M., Magnani, P., Merigo, F., Montani, M., Boschi, F., Marzola, P., Orrù, R., Farace, P., Sbarbati, A. and Amici, A. (2008) Mesenchymal Stem Cells Share Molecular Signature with Mesenchymal Tumor Cells and Favor Early Tumor Growth in Syngeneic Mice. Oncogene, 27, 2542-2551. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yu, J.M., Jun, E.S., Bae, Y.C. and Jung, J.S. (2008) Mesenchymal Stem Cells Derived from Human Adipose Tissues Favor Tumor Cell Growth in Vivo Stem Cells and Development, 17, 463-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bagley, R.G, Weber, W., Rouleau, C., Yao, M., Honma, N., Kataoka, S., Ishida, I., Roberts, B.L. and Teicher, B.A. (2009) Human Mesenchymal Stem Cells from Bone Marrow Ex-press Tumor Endothelial and Stromal Markers. International Journal of Oncology, 34, 619-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cosenza, S., Toupet, K., Maumus, M., Luz-Crawford, .P, Blanc-Brude, O., Jorgensen, C. and Noël, D. (2018) Mesenchymal Stem Cells-Derived Exosomes Are More Immunosuppressive than Microparticles in Inflammatory Arthritis. Theranostics, 8, 1399-1410. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Timmers, L, Lim, S.K, Arslan, F., Armstrong, J.S., Hoefer, I.E., Doeven-dans, P.A., Piek, J.J., El Oakley, R.M., Choo, A., Lee, C.N., Pasterkamp, G. and de Kleijn, D.P. (2007) Reduction of Myocardial Infarct Size by Human Mesenchymal Stem Cell Conditioned Medium. Stem Cell Research, 1, 129-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhang, B., Wang, M., Gong, A., Zhang, X., Wu, X., Zhu, Y., et al. (2015) HucMSC-Exosome Mediated-Wnt4 Signaling Is Required Forcutaneous Wound Healing. Stem Cells, 33, 2158-2168. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Shi, H., Xu, X., Zhang, B., Xu, J., Pan, Z., Gong, A., et al. (2017) 3,3’-Diindolylmethane Stimulates Exosomal Wnt11 Autocrine Signaling in Human Umbilical Cord Mesenchymal Stem Cells to Enhance Wound Healing. Theranostics, 7, 1674-1688. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, J., Guan, J., Niu, X., Hu, G., Guo, S., Li, Q., et al. (2015) Exo-somesreleased from Human Induced Pluripotent Stem Cells-Derived MSCs Facilitate Cutaneous Wound Healing by Promoting Collagen Synthesis and Angiogenesis. Journal of Translational Medicine, 13, Article No. 49. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fang, S., Xu, C., Zhang, Y., Xue, C., Yang, C., Bi, H., et al. (2016) Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomal MicroRNAs Suppress Myofibroblast Dif-ferentiation by Inhibiting the Transforming Growth Factor-β/SMAD2 Pathway during Wound Healing. Stem Cells Translational Medicine, 5, 1425-1439. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhou, Y., Zhou, G., Tian, C., Jiang, W., Jin, L., Zhang, C., et al. (2016) Exosome-Mediated Small RNA Delivery for Gene Therapy. WIREs RNA, 7, 758-771. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Torreggiani, E., Perut, F., Roncuzzi, L., Zini, N., Baglìo, S.R. and Baldini, N. (2014) Exosomes: Novel Effectors of Human Platelet Lysateactivity. European Cells and Materials, 28, 137-151. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, B., Wu, X., Zhang, X., Sun, Y., Yan, Y., Shi, H., et al. (2015) Human Umbilical Cord Mesenchymal Stem Cell Exosomes Enhance Angiogenesis Through the Wnt4/β-Catenin Pathway. Stem Cells Translational Medicine, 4, 513-522. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zhang, B., Shi, Y., Gong, A., Pan, Z., Shi, H., Yang, H., et al. (2016) HucMSC Exosome-Delivered 14-3-3ζ Orchestrates Self-Control of the Wnt Response via Modulation of Yap during Cutaneous Regeneration. Stem Cells, 34, 2485-2500. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Leoni, G., Neumann, P.-A., Kamaly, N., Quiros, M., Nishio, H., Jones, H.R., et al. (2015) Annexin A1-Containing Extracellular Vesicles and Polymeric Nanoparticles Promote Epithelial Wound Repair. Journal of Clinical Investigation, 125, 1215-1227. [Google Scholar] [CrossRef]
|
|
[20]
|
Yao, Y., Zhang, A., Yuan, C., Chen, X. and Liu, Y. (2021) Recent Trends on Burn Wound Care: Hydrogel Dressings and Scaf-folds. Biomaterials Science, 9, 4523-4540. [Google Scholar] [CrossRef]
|
|
[21]
|
Prusty, K. and Swain, S.K. (2019) Chitosan-Based Nanobiocomposites for Wound-Healing Applications. In: Swain, S.K. and Jawaid, M., Eds., Nanostructured Polymer Composites for Biomedical Applications, Elsevier, Amsterdam, 295-314. [Google Scholar] [CrossRef]
|
|
[22]
|
Du, J. and Wong, K.K.Y. (2019) Nanomaterials for Wound Healing: Scope and Progress. In: Cui, W. and Zhao, X., Eds., Theranostic Bionanomaterials, Elsevier, Amster-dam, 211-230. [Google Scholar] [CrossRef]
|
|
[23]
|
Asadi, N., Pazoki-Toroudi, H., Del Bakhshayesh, A.R., Akbarzadeh, A., Davaran, S. and Annabi, N. (2021) Multifunctional Hydrogels for Wound Healing: Special Focus on Biomacromolecular Based Hydrogels. International Journal of Biological Macromolecules, 170, 728-750. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Rodrigues, M., Kosaric, N., Bonham, C.A. and Gurtner, G.C. (2019) Wound Healing: A Cellular Perspective. Physiological Reviews, 99, 665-706. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bus, S.A., Lavery, L.A., Monteiro-Soares, M., Rasmussen, A., Raspovic, A., Sacco, I.C.N. and van Netten, J.J. (2020) Guidelines on the Prevention of Foot Ulcers in Persons with Diabetes (IWGDF 2019 Update). Diabetes/Metabolism Research and Reviews, 36, e3269. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
李桥, 胡飞剑, 聂静, 祖罡, 毕大卫. 糖尿病足部溃疡外科保肢治疗进展[J]. 中国骨伤, 2020, 33(10): 986-990.
|
|
[27]
|
Everett, E. and Mathioudakis, N. (2018) Update on Management of Di-abetic Foot Ulcers. Annals of the New York Academy of Sciences, 1411, 153-165. [Google Scholar] [CrossRef] [PubMed]
|