| [1] | Jickells, T.D., An, Z.S., Andersen, K.K., et al. (2005) Global Iron Connections between Desert Dust, Ocean Biogeochemistry, and Climate. Science, 308, 67-71. https://doi.org/10.1126/science.1105959
 | 
                     
                                
                                    
                                        | [2] | Taylor, K.G. and Konhauser, K.O.J.E. (2011) Iron in Earth Surface Systems: A Major Player in Chemical and Biological Processes. Elements, 7, 83-88. https://doi.org/10.2113/gselements.7.2.83
 | 
                     
                                
                                    
                                        | [3] | Schwertmann, U. and Cornell, R.M. (1991) Iron Oxides in the Laboratory: Preparation and Characterization. Wiley- VCH, Weinheim. | 
                     
                                
                                    
                                        | [4] | Cornell, R.M. and Schwertmann, U. (2003) The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley-VCH, Weinheim. https://doi.org/10.1002/3527602097
 | 
                     
                                
                                    
                                        | [5] | He, K., Song, B., Zhan, L., et al. (2016) Size-Controlled Synthesis of Hematite Mesocrystals. CrystEngComm, 18, 754-758. https://doi.org/10.1039/C5CE00849B
 | 
                     
                                
                                    
                                        | [6] | Ling, D., Lee, N. and Hyeon, T. (2015) Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48, 1276-1285. https://doi.org/10.1021/acs.accounts.5b00038
 | 
                     
                                
                                    
                                        | [7] | Huang, X.P., Hou, X.J., Zhang, X., Rosso, K.M. and Zhang, L.Z. (2018) Facet-Dependent Contaminant Removal Properties of Hematite Nanocrystals and Their Environmental Implications. Environmental Science: Nano, 5, 1790- 1806. https://doi.org/10.1039/C8EN00548F
 | 
                     
                                
                                    
                                        | [8] | Liu, T., Xue, L., Guo, X., Huang, Y. and Zheng, C.G. (2016) DFT and Experimental Study on the Mechanism of Elemental Mercury Capture in the Presence of HCl on α-Fe2O3(001). Environmental Science & Technology, 50, 4863- 4868. https://doi.org/10.1021/acs.est.5b06340
 | 
                     
                                
                                    
                                        | [9] | Chen, L., Yang, X., Chen, J., et al. (2010) Continuous Shape- and Spectroscopy-Tuning of Hematite Nanocrystals. Inorganic Chemistry, 49, 8411-8420. https://doi.org/10.1021/ic100919a
 | 
                     
                                
                                    
                                        | [10] | Ouyang, J., Pei, J., Kuang, Q., Xie, Z.X. and Zheng, L.S. (2014) Supersaturation-Controlled Shape Evolution of α-Fe2O3 Nanocrystals and Their Facet-Dependent Catalytic and Sensing Properties. ACS Applied Materials & Interfaces, 6, 12505-12514. https://doi.org/10.1021/am502358g
 | 
                     
                                
                                    
                                        | [11] | Sun, L., Zhan, W., Li, Y.A., et al. (2018) Understanding the Facet-Dependent Catalytic Performance of Hematite Micro- crystals in a CO Oxidation Reaction. Inorganic Chemistry Frontiers, 5, 2332-2339. https://doi.org/10.1039/C8QI00548F
 | 
                     
                                
                                    
                                        | [12] | Liang, X., Wang, X., Zhuang, J., et al. (2006) Synthesis of Nearly Monodisperse Iron Oxide and Oxyhydroxide Nanocrystals. Advanced Functional Materials, 16, 1805-1813. https://doi.org/10.1002/adfm.200500884
 | 
                     
                                
                                    
                                        | [13] | Wang, J. and Rustad, J.R. (2006) A Simple Model for the Effect of Hydration on the Distribution of Ferrous Iron at Reduced Hematite (012) Surfaces. Geochimica et Cosmochimica Acta, 70, 5285-5292. https://doi.org/10.1016/j.gca.2006.08.022
 | 
                     
                                
                                    
                                        | [14] | Barik, R. and Mohapatra, M. (2015) Solvent Mediated Surface Engineering of α-Fe2O3 Nanomaterials: Facet Sensitive Energy Storage Materials. CrystEngComm, 17, 9203-9215. https://doi.org/10.1039/C5CE01369K
 | 
                     
                                
                                    
                                        | [15] | Zhou, X., Yang, H., Wang, C., et al. (2010) Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-Dimensional Iron Oxide Particles. The Journal of Physical Chemistry C, 114, 17051-17061. https://doi.org/10.1021/jp103816e
 | 
                     
                                
                                    
                                        | [16] | Wu, C., Yin, P., Zhu, X., OuYang, C.Z. and Xie, Y. (2006) Synthesis of Hematite (α-Fe2O3) Nanorods: Diameter-Size and Shape Effects on Their Applications in Magnetism, Lithium Ion Battery, and Gas Sensors. The Journal of Physical Chemistry B, 110, 17806-17812. https://doi.org/10.1021/jp0633906
 | 
                     
                                
                                    
                                        | [17] | Vuong, D.D., Phuoc, L.H., Hien, V.X. and Chien, N.D. (2020) Hydrothermal Synthesis and Ethanol-Sensing Properties of α-Fe2O3 Hollow Nanospindles. Materials Science in Semiconductor Processing, 107, Article ID: 104861. https://doi.org/10.1016/j.mssp.2019.104861
 | 
                     
                                
                                    
                                        | [18] | Zheng, Y., Cheng, Y., Wang, Y., et al. (2006) Quasicubic α-Fe2O3 Nanoparticles with Excellent Catalytic Performance. The Journal of Physical Chemistry B, 110, 3093-3097. https://doi.org/10.1021/jp056617q
 | 
                     
                                
                                    
                                        | [19] | Zhou, H. and Wong, S.S. (2008) A Facile and Mild Synthesis of 1-D ZnO, CuO, and α-Fe2O3 Nanostructures and Nanostructured Arrays. ACS Nano, 2, 944-958. https://doi.org/10.1021/nn700428x
 | 
                     
                                
                                    
                                        | [20] | Kay, A., Cesar, I. and Grätzel, M. (2006) New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films. Journal of the American Chemical Society, 128, 15714-15721. https://doi.org/10.1021/ja064380l
 | 
                     
                                
                                    
                                        | [21] | Huang, X.P., Hou, X.J., Zhao, J.C. and Zhang, L.Z. (2016) Hematite Facet Confined Ferrous Ions as High Efficient Fenton Catalysts to Degrade Organic Contaminants by Lowering H2O2 Decomposition Energetic Span. Applied Catalysis B: Environmental, 181, 127-137. https://doi.org/10.1016/j.apcatb.2015.06.061
 | 
                     
                                
                                    
                                        | [22] | Vayssieres, L., Beermann, N., Lindquist, S.E. and Hagfeldt, A. (2001) Controlled Aqueous Chemical Growth of Oriented Three-Dimensional Crystalline Nanorod Arrays: Application to Iron(III) Oxides. Chemistry of Materials, 13, 233-235. https://doi.org/10.1021/cm001202x
 | 
                     
                                
                                    
                                        | [23] | Zhang, R., Liu, D.B. and Yang, P.J.R.A. (2019) Morphology Control of α-Fe2O3 towards Super Electrochemistry Performance. RSC Advances, 9, 21947-21955. https://doi.org/10.1039/C9RA01675A
 | 
                     
                                
                                    
                                        | [24] | Kushwaha, P. and Chauhan, P. (2022) Influence of Annealing Temperature on Microstructural and Magnetic Properties of Fe2O3 Nanoparticles Synthesized via Sol-Gel Method. Inorganic and Nano-Metal Chemistry, 52, 937-950. https://doi.org/10.1080/24701556.2021.2025108
 | 
                     
                                
                                    
                                        | [25] | Li, Y., Xiang, J., Qian, F., et al. (2006) Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors. Nano Letters, 6, 1468-1473. https://doi.org/10.1021/nl060849z
 | 
                     
                                
                                    
                                        | [26] | Qian, F., Gradecak, S., Li, Y., Wen, C.Y. and Lieber, C.M. (2005) Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes. Nano Letters, 5, 2287-2291. https://doi.org/10.1021/nl051689e
 | 
                     
                                
                                    
                                        | [27] | Atacan, K., Güy, N., Boutra, B. and Özacar, M. (2020) Enhancement of Photoelectrochemical Hydrogen Production by Using a Novel Ternary Ag2CrO4/GO/MnFe2O4 Photocatalyst. International Journal of Hydrogen Energy, 45, 17453- 17467. https://doi.org/10.1016/j.ijhydene.2020.04.268
 | 
                     
                                
                                    
                                        | [28] | Lin, Y., Zhou, S., Sheehan, S.W. and Wang, D.W. (2011) Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting. Journal of the American Chemical Society, 133, 2398-2401. https://doi.org/10.1021/ja110741z
 | 
                     
                                
                                    
                                        | [29] | Wu, J.J., Lee, Y.L., Chiang, H.H. and Wong, D.K.P. (2006) Growth and Magnetic Properties of Oriented α-Fe2O3 Nanorods. The Journal of Physical Chemistry B, 110, 18108-18111. https://doi.org/10.1021/jp0644661
 | 
                     
                                
                                    
                                        | [30] | Zhang, S., Gao, B. and Leng, W. (2023) Kinetic Difference in Water Photooxidation between TiO2 and WO3 Electrodes by Rate Law Analysis. ACS Applied Energy Materials, 6, 1973-1981. https://doi.org/10.1021/acsaem.2c03895
 | 
                     
                                
                                    
                                        | [31] | Martinson, A.B.F., Devries, M.J., Libera, J.A., et al. (2011) Atomic Layer Deposition of Fe2O3 Using Ferrocene and Ozone. The Journal of Physical Chemistry C, 115, 4333-4339. https://doi.org/10.1021/jp110203x
 | 
                     
                                
                                    
                                        | [32] | Rao, P.M. and Zheng, X. (2009) Rapid Catalyst-Free Flame Synthesis of Dense, Aligned α-Fe2O3 Nanoflake and CuO Nanoneedle Arrays. Nano Letters, 9, 3001-3006. https://doi.org/10.1021/nl901426t
 | 
                     
                                
                                    
                                        | [33] | Maabong, K., Machatine, A.G.J., Mwankemwa, B.S., et al. (2018) Nanostructured Hematite Thin Films for Photoelectrochemical Water Splitting. Physica B: Condensed Matter, 535, 67-71. https://doi.org/10.1016/j.physb.2017.06.054
 | 
                     
                                
                                    
                                        | [34] | Perednis, D. and Gauckler, L.J. (2005) Thin Film Deposition Using Spray Pyrolysis. Journal of Electroceramics, 14, 103-111. https://doi.org/10.1007/s10832-005-0870-x
 | 
                     
                                
                                    
                                        | [35] | Nyarige, J.S., Krüger, T.P.J. and Diale, M. (2020) Structural and Optical Properties of Hematite and L-Arginine/He- matite Nanostructures Prepared by Thermal Spray Pyrolysis. Surfaces and Interfaces, 18, Article ID: 100394. https://doi.org/10.1016/j.surfin.2019.100394
 | 
                     
                                
                                    
                                        | [36] | Diab, M. and Mokari, T. (2014) Thermal Decomposition Approach for the Formation of α-Fe2O3 Mesoporous Photoanodes and an α-Fe2O3/CoO Hybrid Structure for Enhanced Water Oxidation. Inorganic Chemistry, 53, 2304-2309. https://doi.org/10.1021/ic403027r
 | 
                     
                                
                                    
                                        | [37] | Chemelewski, W.D., Hahn, N.T. and Mullins, C.B. (2012) Effect of Si Doping and Porosity on Hematite’s (α-Fe2O3) Photoelectrochemical Water Oxidation Performance. The Journal of Physical Chemistry C, 116, 5255-5261. https://doi.org/10.1021/jp210877u
 | 
                     
                                
                                    
                                        | [38] | Zhang, K., Shi, X., Kim, J.K., Lee, J.S. and Park, J.H. (2013) Inverse Opal Structured α-Fe2O3 on Graphene Thin Films: Enhanced Photo-Assisted Water Splitting. Nanoscale, 5, 1939-1944. https://doi.org/10.1039/c2nr33036a
 | 
                     
                                
                                    
                                        | [39] | Mao, A., Shin, K., Kim, J.K., et al. (2011) Controlled Synthesis of Vertically Aligned Hematite on Conducting Substrate for Photoelectrochemical Cells: Nanorods versus Nanotubes. ACS Applied Materials & Interfaces, 3, 1852-1858. https://doi.org/10.1021/am200407t
 | 
                     
                                
                                    
                                        | [40] | Latempa, T.J., Feng, X., Paulose, M. and Grimes, C.A. (2009) Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties. The Journal of Physical Chemistry C, 113, 16293-16298. https://doi.org/10.1021/jp904560n
 | 
                     
                                
                                    
                                        | [41] | Meng, Q., Wang, Z., Chai, X., et al. (2016) Fabrication of Hematite (α-Fe2O3) Nanoparticles Using Electrochemical Deposition. Applied Surface Science, 368, 303-308. https://doi.org/10.1016/j.apsusc.2016.02.007
 | 
                     
                                
                                    
                                        | [42] | Zhang, M.L., Luo, W.J., Li, Z.S., Yu, T. and Zou, Z.G. (2010) Improved Photoelectrochemical Responses of Si and Ti Codoped α-Fe2O3 Photoanode Films. Applied Physics Letters, 97, Article 042105. https://doi.org/10.1063/1.3470109
 | 
                     
                                
                                    
                                        | [43] | Hitam, C.N.C. and Jalil, A.A. (2020) A Review on Exploration of Fe2O3 Photocatalyst towards Degradation of Dyes and Organic Contaminants. Journal of Environmental Management, 258, Article ID: 110050. https://doi.org/10.1016/j.jenvman.2019.110050
 | 
                     
                                
                                    
                                        | [44] | Yan, H., Su, X., Yang, C., Wang, J.D. and Niu, C.G. (2014) Improved Photocatalytic and Gas Sensing Properties of α-Fe2O3 Nanoparticles Derived from β-FeOOH Nanospindles. Ceramics International, 40, 1729-1733. | 
                     
                                
                                    
                                        | [45] | https://doi.org/10.1016/j.ceramint.2013.07.070
 | 
                     
                                
                                    
                                        | [46] | Da Silva, L.F., Catto, A.C., Bernardini, S., et al. (2021) BTEX Gas Sensor Based on Hematite Microrhombuses. Sensors and Actuators B: Chemical, 326, Article ID: 128817. https://doi.org/10.1016/j.snb.2020.128817
 | 
                     
                                
                                    
                                        | [47] | Ryu, G.M., Lee, M., Choi, D.S. and Park, C.B. (2015) A Hematite-Based Photoelectrochemical Platform for Visible Light-Induced Biosensing. Journal of Materials Chemistry B, 3, 4483-4486. https://doi.org/10.1039/C5TB00478K
 |