|
[1]
|
Dolferus, R. (2014) To Grow or Not to Grow: A Stressful Decision for Plants. Plant Science, 229, 247-261.
[Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Imran, Q.M., Falak, N., Hussain, A.,Mun, B.G. and Yun, B.W. (2021) Abiotic Stress in Plants; Stress Perception to Molecular Response and Role of Biotechnological Tools in Stress Resistance. Agronomy, 11, Article No. 1579.
[Google Scholar] [CrossRef]
|
|
[3]
|
Urano, K., Kurihara, Y., Seki, M. and Shinozaki, K. (2010) ‘Omics’ Analyses of Regulatory Networks in Plant Abiotic Stress Responses. Current Opinion in Plant Biology, 13, 132-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Finotello, F. and Di Camillo, B. (2015) Measuring Differential Gene Expression with RNA-Seq: Challenges and Strategies for Data Analysis. Briefings in Functional Genomics, 14, 130-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Matsui, A., Ishida, J., Morosawa, T., Mochizuki, Y., Kaminuma, E., Endo, T.A., Okamoto, M., Nambara, E., Nakajima, M., Kawashima, M., Satou, M., Kim, J.-M., Kobayashi, N., Toyoda, T., Shinozaki, K. and Seki, M. (2008) Arabidopsis Transcriptome Analysis under Drought, Cold, High-Salinity and ABA Treatment Conditions Using a Tiling Array. Plant and Cell Physiology, 49, 1135-1149. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Fowler, S. and Thomashow, M.F. (2002) Arabidopsis Transcriptome Profiling Indicates That Multiple Regulatory Pathways Are Activated during Cold Acclimation in Addition to the CBF Cold Response Pathway. The Plant Cell, 14, 1675-1690. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Mosa, K.A., Ismail, A. and Helmy, M. (2017) Omics and System Biology Approaches in Plant Stress Research. In: Plant Stress Tolerance. SpringerBriefs in Systems Biology, Springer, Cham, 21-34.
[Google Scholar] [CrossRef]
|
|
[8]
|
Parida, A.K., Panda, A. and Rangani, J. (2018) Metabolomics-Guided Elucidation of Abiotic Stress Tolerance Mechanisms in Plants. In: Ahmad, P., Ahanger, M.A., Singh, V.P., Tripathi, D.K., Alam, P. and Alyemeni, M.N., Eds., Plant Metabolites and Regulation under Environmental Stress, Academic Press, Cambridge, 89-131.
[Google Scholar] [CrossRef]
|
|
[9]
|
Soda, N., Wallace, S. and Karan, R. (2015) Omics Study for Abiotic Stress Responses in Plants. Advances in Plants & Agriculture Research, 2, 28-34. [Google Scholar] [CrossRef]
|
|
[10]
|
Araguirang, G.E. and Richter, A.S. (2022) Activation of Anthocyanin Biosynthesis in High Light—What Is the Initial Signal? New Phytologist, 236, 2037-2043. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Li, J., Ou-Lee, T.-M., Raba, R., Amundson, R.G. and Last, R.L. (1993) Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. The Plant Cell, 5, 171-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Solfanelli, C., Poggi, A., Loreti, E., Alpi, A. and Perata, P. (2006) Sucrose-Specific Induction of the Anthocyanin Biosynthetic Pathway in Arabidopsis. Plant Physiology, 140, 637-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Shi, M.-Z. and Xie, D.-Y. (2014) Biosynthesis and Metabolic Engineering of Anthocyanins in Arabidopsis thaliana. Recent Patents on Biotechnology, 8, 47-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Huang, J., Zhao, X. and Chory, J. (2019) The Arabidopsis Transcriptome Responds Specifically and Dynamically to High Light Stress. Cell Reports, 29, 4186-4199. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Li, S. and Zachgo, S. (2013) TCP 3 Interacts with R2R3-MYB Proteins, Promotes Flavonoid Biosynthesis and Nega-tively Regulates the Auxin Response in Arabidopsis thaliana. The Plant Journal, 76, 901-913.
https://doi.Org/10.1111/Tpj.12348
|
|
[16]
|
Zoratti, L., Karppinen, K., Luengo Escobar, A., Häggman, H. and Jaakola, L. (2014) Light-Controlled Flavonoid Biosynthesis in Fruits. Frontiers in Plant Science, 5, Article 534. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ye, J.-H., Lv, Y.-Q., Liu, S.-R., Jin, J., Wang, Y.-F., Wei, C.-L. and Zhao, S.-Q. (2021) Effects of Light Intensity and Spectral Composition on the Transcriptome Profiles of Leaves in Shade Grown Tea Plants (Camellia sinensis L.) and Regulatory Network of Flavonoid Biosynthesis. Molecules, 26, Article No. 5836.
[Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hong, Y., Tang, X., Huang, H., Zhang, Y. and Dai, S. (2015) Transcriptomic Analyses Reveal Species-Specific Light- Induced Anthocyanin Biosynthesis in Chrysanthemum. BMC Genomics, 16, Article No. 202.
[Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, H.-N., Li, W.-C., Wang, H.-C., Shi, S.-Y., Shu, B., Liu, L.-Q., Wei, Y.-Z. and Xie, J.-H. (2016) Transcriptome Profiling of Light-Regulated Anthocyanin Biosynthesis in the Pericarp of Litchi. Frontiers in Plant Science, 7, Article 963. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, T., Song, S., Yuan, Y., Wu, D., Chen, M., Sun, Q., et al. (2015) Improved Peach Peel Color Development by Fruit Bagging. Enhanced Expression of Anthocyanin Biosynthetic and Regulatory Genes Using White Non-Woven Polypropylene as Replacement for Yellow Paper. Scientia Horticulturae, 184, 142-148.
[Google Scholar] [CrossRef]
|
|
[21]
|
Zhang, Y., Xu, S., Cheng, Y., Peng, Z. and Han, J. (2018) Transcriptome Profiling of Anthocyanin-Related Genes Reveals Effects of Light Intensity on Anthocyanin Biosynthesis in Red Leaf Lettuce. PeerJ, 6, e4607.
[Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xiang, L.-L., Liu, X.-F., Li, X., Yin, X.-R., Grierson, D., Li, F. and Chen, K.-S. (2015) A Novel bHLH Transcription Factor Involved in Regulating Anthocyanin Biosynthesis in Chrysanthemums (Chrysanthemum morifolium Ramat.). PLOS ONE, 10, e0143892. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Lin-Wang, K., McGhie, T.K., Wang, M., Liu, Y., Warren, B., Storey, R., Espley, R.V. and Allan, A.C. (2014) Engineering the Anthocyanin Regulatory Complex of Strawberry (Fragaria vesca). Frontiers in Plant Science, 5, Article 651. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tao, R., Yu, W., Gao, Y., Ni, J., Yin, L., Zhang, X., et al. (2020) Light-Induced Basic/Helix-Loop-Helix64 Enhances Anthocyanin Biosynthesis and Undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-Mediated Degradation in Pear. Plant Physiology, 184, 1684-1701. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Efeoğlu, B. (2009) Heat Shock Proteins and Heat Shock Response in Plants. Gazi University Journal of Science, 22, 67-75.
|
|
[26]
|
Da Costa, M.V.J., Ramegowda, V., Ramakrishnan, P., Nataraja, K.N. and Sheshshayee, M.S. (2022) Comparative Metabolite Profiling of Rice Contrasts Reveal Combined Drought and Heat Stress Signatures in Flag Leaf and Spikelets. Plant Science, 320, Article ID: 111262. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
El-Sappah, A.H., Rather, S.A., Wani, S.H., Elrys, A.S., Bilal, M., Huang, Q., et al. (2022) Heat Stress-Mediated Constraints in Maize (Zea mays) Production: Challenges and Solutions. Frontiers in Plant Science, 13, Article 879366.
[Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, X., Wang, Q., Li, W., Hu, T., Wang, Q., Yin, Y., et al. (2022) Overexpression of SlBBX17 Affects Plant Growth and Enhances Heat Tolerance in Tomato. International Journal of Biological Macromolecules, 206, 799-811.
[Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Masoomi-Aladizgeh, F., Kamath, K.S., Haynes, P.A. and Atwell, B.J. (2022) Genome Survey Sequencing of Wild Cotton (Gossypium robinsonii) Reveals Insights into Proteomic Responses of Pollen to Extreme Heat. Plant, Cell & Environment, 45, 1242-1256. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, W., Chen, Y., Ye, M.H., Wang, D.D. and Chen, Q. (2020) Evolutionary History of the Heat Shock Protein 90 (Hsp90) Family of 43 Plants and Characterization of Hsp90s in Solanum tuberosum. Molecular Biology Reports, 47, 6679-6691. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Imamoglu, R., Balchin, D., Hayer-Hartl, M. and Hartl, F.U. (2020) Bacterial Hsp70 Misfolded States and Accelerates Productive Folding of a Multi-Domain Protein. Nature Communication, 11, Article No. 365.
[Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lee, D.G., Ahsan, N., Kim, Y.G., Kim, K.H., Lee, S.H., Lee, K.W., et al. (2013) Expression of Heat Shock Protein and Antioxidant Genes in Rice Leaf under Heat Stress. Journal of the Korean Society of Grassland Science, 33, 159-166.
[Google Scholar] [CrossRef]
|
|
[33]
|
Sharma, S., Reddy, P., Rohilla, M.S. and Tiwari, P.K. (2006) Expression of HSP60 Homologue in Sheep Blowfly Lucilia cuprina during Development and Heat Stress. Journal of Thermal Biology, 31, 546-555.
[Google Scholar] [CrossRef]
|
|
[34]
|
Tominaga, H., Coury, D.A., Amano, H., Miki, W. and Kakinuma, M. (2012) CDNA Cloning and Expression Analysis of Two Heat Shock Protein Genes, Hsp90 and Hsp60, from a Sterile Ulva pertusa (Ulvales, Chlorophyta). Fisheries Science, 78, 415-429. [Google Scholar] [CrossRef]
|
|
[35]
|
Jackson, S.E. (2013) Small Heat-Shock Proteins: Paramedics of the Cell. In: Jackson, S., Ed., Molecular Chaperones. Topics in Current Chemistry, Vol. 328, Springer, Berlin, 69-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Qian, R., Hu, Q., Ma, X., Zhang, X., Ye, Y., Liu, H., Gao, H. and Zheng, J. (2022) Comparative Transcriptome Analysis of Heat Stress Responses of Clematis lanuginosa and Clematis crassifolia. BMC Plant Biology, 22, Article No. 138.
[Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Reddy, A.S., Ali, G.S., Celesnik, H. and Day, I.S. (2011) Coping with Stresses: Roles of Calcium- and Calcium/Cal- modulin-Regulated Gene Expression. The Plant Cell, 23, 2010-2032. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Mittler, R., Finka, A. and Goloubinoff, P. (2012) How Do Plants Feel the Heat? Trends in Biochemical Sciences, 37, 118-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhou, Y., Xu, F., Shao, Y. and He, J. (2022) Regulatory Mechanisms of Heat Stress Response and Thermomorphogenesis in Plants. Plants, 11, Article No. 3410. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, B., Gao, Z., Liu, X., Sun, D. and Tang, W. (2019) Transcriptional Profiling Reveals a Time-of-Day-Specific Role of REVEILLE 4/8 in Regulating the First Wave of Heat Shock-Induced Gene Expression in Arabidopsis. The Plant Cell, 31, 2353-2369. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Zhou, Y., Wang, Y., Xu, F., Song, C., Yang, X., Zhang, Z., et al. (2022) Small HSPs Play an Important Role in Crosstalk between HSF-HSP and ROS Pathways in Heat Stress Response through Transcriptomic Analysis in Lilies (Lilium longiflorum). BMC Plant Biology, 22, Article No. 202. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Giorno, F., Wolters-Arts, M., Grillo, S., Scharf, K. D., Vriezen, W.H. and Mariani, C. (2010) Developmental and Heat Stress-Regulated Expression of HsfA2 and Small Heat Shock Proteins in Tomato Anthers. Journal of Experimental Botany, 61, 453-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Ghori, N.-H., Ghori, T., Hayat, M.Q., Imadi, S.R., Gul, A., Altay, V. and Ozturk, M. (2019) Heavy Metal Stress and Responses in Plants. International Journal of Environmental Science and Technology, 16, 1807-1828.
[Google Scholar] [CrossRef]
|
|
[44]
|
Hossain, M.A., Piyatida, P., da Silva, J.A.T. and Fujita, M. (2012) Molecular Mechanism of Heavy Metal Toxicity and Tolerance in Plants: Central Role of Glutathione in Detoxification of Reactive Oxygen Species and Methylglyoxal and in Heavy Metal Chelation. Journal of Botany, 2012, Article ID: 872875. [Google Scholar] [CrossRef]
|
|
[45]
|
Wang, C., Tao, W., Ping, M.U., Li, Z.C., and Yang, L. (2013) Quantitative Trait Loci for Mercury Tolerance in Rice Seedlings. Rice Science, 20, 238-242. [Google Scholar] [CrossRef]
|
|
[46]
|
Rascio, N. and Navari-Izzo, F. (2011) Heavy Metal Hyperaccumulating Plants: How and Why Do They Do It? And What Makes Them So Interesting? Plant Science, 180, 169-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Jogawat, A., Yadav, B. and Narayan, O.P. (2021) Metal Transporters in Organelles and Their Roles in Heavy Metal Transportation and Sequestration Mechanisms in Plants. Physiologia Plantarum, 173, 259-275.
[Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Van De Mortel, J.E., Almar Villanueva, L., Schat, H., Kwekkeboom, J., Coughlan, S., Moerland, P.D., et al. (2006) Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens. Plant Physiology, 142, 1127-1147. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Weber, M., Trampczynska, A. and Clemens, S. (2006) Comparative Transcriptome Analysis of Toxic Metal Responses in Arabidopsis thaliana and the Cd2+-Hypertolerant Facultative Metallophyte Arabidopsis halleri. Plant, Cell & Environment, 29, 950-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Courbot, M., Willems, G., Motte, P., Arvidsson, S., Roosens, N., Saumitou-Laprade, P. and Verbruggen, N. (2007) A Major Quantitative Trait Locus for Cadmium Tolerance in Arabidopsis halleri Colocalizes with HMA4, a Gene Encoding a Heavy Metal ATPase. Plant Physiology, 144, 1052-1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Gao, J., Sun, L., Yang, X. and Liu, J.-X. (2013) Transcriptomic Analysis of Cadmium Stress Response in the Heavy Metal Hyperaccumulator Sedum alfredii Hance. PLOS ONE, 8, e64643. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Zhang, H., Zhao, S., Li, D., Xu, X. and Li, C. (2017) Genome-Wide Analysis of the ZRT, IRT-Like Protein (ZIP) Family and Their Responses to Metal Stress in Populus trichocarpa. Plant Molecular Biology Reporter, 35, 534-549.
|
|
[53]
|
Talke, I.N., Hanikenne, M. and Krämer, U. (2006) Zinc-Dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri. Plant Physiology, 142, 148-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Corso, M., Schvartzman, M.S., Guzzo, F., Souard, F., Malkowski, E., Hanikenne, M. and Verbruggen, N. (2018) Contrasting Cadmium Resistance Strategies in Two Metallicolous Populations of Arabidopsis halleri. New Phytologist, 218, 283-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Merlot, S., Garcia de la Torre, V.S. and Hanikenne, M. (2021) Physiology and Molecular Biology of Trace Element Hyperaccumulation. In: van der Ent, A., Baker, A.J., Echevarria, G., Simonnot, MO. and Morel, J.L., Eds., Agromining: Farming for Metals. Mineral Resource Reviews, Springer, Cham, 155-181.
[Google Scholar] [CrossRef]
|
|
[56]
|
Zhai, Z., Gayomba, S.R., Jung, H.I., Vimalakumari, N.K., Piñeros, M., Craft, E., et al. (2014) OPT3 Is a Phloem-Spe- cific Iron Transporter That Is Essential for Systemic Iron Signaling and Redistribution of Iron and Cadmium in Arabidopsis. The Plant Cell, 26, 2249-2264. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Wang, J., Liang, S., Xiang, W., et al. (2019) A Repeat Region from the Brassica juncea HMA4 Gene BjHMA4R Is Specifically Involved in Cd2+ Binding in the Cytosol under Low Heavy Metal Concentrations. BMC Plant Biology, 19, Article No. 89. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Mills, R.F., Krijger, G.C., Baccarini, P.J., Hall, J.L. and Williams, L.E. (2003) Functional Expression of AtHMA4, a P1B-Type ATPase of the Zn/Co/Cd/Pb Subclass. The Plant Journal, 35, 164-176.
[Google Scholar] [CrossRef]
|
|
[59]
|
Yokosho, K., Yamaji, N. and Ma, J.F. (2014) Global Transcriptome Analysis of Al-Induced Genes in an Al-Accumu- lating Species, Common Buckwheat (Fagopyrum esculentum Moench). Plant and Cell Physiology, 55, 2077-2091.
[Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Ariani, A., Di Baccio, D., Romeo, S., Lombardi, L., Andreucci, A., Lux, A., Horner, D.S. and Sebastiani, L. (2015) RNA Sequencing of Populus x canadensis Roots Identifies Key Molecular Mechanisms Underlying Physiological Adaption to Excess Zinc. PLOS ONE, 10, e0117571. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Chang, J.-D., Huang, S., Yamaji, N., et al. (2020) OsNRAMP1 Transporter Contributes to Cadmium and Manganese Uptake in Rice. Plant, Cell & Environment, 43, 2476-2491. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Xu, X., Zhang, S., Cheng, Z., et al. (2020) Transcriptome Analysis Revealed Cadmium Accumulation Mechanisms in Hyperaccumulator Siegesbeckia orientalis L. Environmental Science and Pollution Research, 27, 18853-18865.
[Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wei, W., Chai, T., Zhang, Y., Han, L., Xu, J. and Guan, Z. (2009) The Thlaspi caerulescens NRAMP Homologue TcNRAMP3 Is Capable of Divalent Cation Transport. Molecular Biotechnology, 41, 15-21.
[Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Liu, H., Zhao, H., Wu, L., Liu, A., Zhao, F.-J. and Xu, W. (2017) Heavy Metal ATPase 3 (HMA3) Confers Cadmium Hypertolerance on the Cadmium/Zinc Hyperaccumulator Sedum plumbizincicola. New Phytologist, 215, 687-698.
[Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Zhao, H., Wang, L., Zhao, F.-J., Wu, L., Liu, A. and Xu, W. (2019) SpHMA1 Is a Chloroplast Cadmium Exporter Protecting Photochemical Reactions in the Cd Hyperaccumulator Sedum plumbizincicola. Plant, Cell & Environment, 42, 1112-1124. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Wang, L., Zheng, B., Yuan, Y., Xu, Q. and Chen, P. (2020) Transcriptome Profiling of Fagopyrum tataricum Leaves in Response to Lead Stress. BMC Plant Biology, 20, Article No. 54. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Wu, D., Yamaji, N., Yamane, M., Kashino-Fujii, M., Sato, K. and Ma, J.F. (2016) The HvNramp5 Transporter Mediates Uptake of Cadmium and Manganese, but Not Iron. Plant Physiology, 172, 1899-1910.
[Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Feng, S., Tan, J., Zhang, Y., Liang, S., Xiang, S., Wang, H. and Chai, T. (2017) Isolation and Characterization of a Novel Cadmium-Regulated Yellow Stripe-Like Transporter (SnYSL3) in Solanum nigrum. Plant Cell Reports, 36, 281-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Peng, F., Wang, C., Zhu, J., Zeng, J., Kang, H., Fan, X., et al. (2018) Expression of TpNRAMP5, a Metal Transporter from Polish Wheat (Triticum polonicum L.), Enhances the Accumulation of Cd, Co and Mn in Transgenic Arabidopsis Plants. Planta, 247, 1395-1406. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Zhang, X., Li, X., Tang, L., Peng, Y., Qian, M., Guo, Y., et al. (2020) The Root Iron Transporter 1 Governs Cadmium uptake in Vicia sativa Roots. Journal of Hazardous Materials, 398, Article ID: 122873.
[Google Scholar] [CrossRef] [PubMed]
|