|
[1]
|
胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3): 209-220.
|
|
[2]
|
Collins, A.J., Foley, R.N., Chavers, B., et al. (2012) United States Renal Data System 2011 Annual Data Report: Atlas of Chronic Kidney Disease & End-Stage Renal Disease in the United States. American Journal of Kidney Diseases, 59, e1-e420.
|
|
[3]
|
卢辉耀, 徐训发, 郭佳音, 等. 沙库巴曲缬沙坦对心肌梗死大鼠模型心肌重构和心功能的影响[J]. 中华老年医学杂志, 2019, 38(9): 1048-1052. [Google Scholar] [CrossRef]
|
|
[4]
|
高秀林. 高血压肾损害发病机制的研究进展[J]. 北京医学, 2007, 29(9): 559-561. [Google Scholar] [CrossRef]
|
|
[5]
|
Queisser, N., Oteiza, P.I., Stopper, H., Oli, R.G. and Schupp, N. (2011) Aldosterone Induces Oxidative Stress, Oxidative DNA Damage and NF-κB-Activation in Kidney Tubule Cells. Molecular Carcinogenesis, 50, 123-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kawarazaki, H., Ando, K., Shibata, S., et al. (2012) Mineralocorticoid Re-ceptor—Racl Activation and Oxidative Stress Play Major Roles in Salt-Induced Hypertension and Kidney Injury in Pre-pubertal Rats. Journal of Hypertension, 30, 1977-1985. [Google Scholar] [CrossRef]
|
|
[7]
|
Kawarazaki, W., Nagase, M., Yoshida, S., et al. (2012) An-giotensin II- and Salt-Induced Kidney Injury through Rac1-Mediated Mineralocorticoid Receptor Activation. Journal of the American Society of Nephrology, 23, 997-1007. [Google Scholar] [CrossRef]
|
|
[8]
|
Wang, G., Lai, F.M., Kwan, B.C., et al. (2009) Podocyte Loss in Human Hypertensive Nephrosclerosis. American Journal of Hypertension, 22, 300-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kim, S.M., Kim, Y.G., Jeong, K.H., et al. (2012) Angiotensin II-Induced Mitochondrial Nox4 Is a Major Endogenous Source of Oxidative Stress in Kidney Tubular Cells. PLOS ONE, 7, e39739. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Shankar, A., Li, J., Nieto, F.J., Klein, B.E.K. and Klein, R. (2007) Association between C-Reactive Protein Level and Peripheral Arterial Disease among US Adults without Cardio-vascular Disease, Diabetes, or Hypertension. American Heart Journal, 154, 495-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Okamura, A., Rakugi, H., Ohishi, M., et al. (1999) Upregulation of Renin-Angiotensin System during Differentiation of Monocytes to Macrophages. Journal of Hypertension, 17, 537-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Diet, F., Pratt, R.E., Berry, G.J., Momose, N., Gibbons, G.H. and Dzau, V.J. (1996) Increased Accumulation of Tissue ACE in Human Atherosclerotic Coronary Artery Disease. Circulation, 94, 2756-2767. [Google Scholar] [CrossRef]
|
|
[13]
|
Xia, Y., Entman, M.L. and Wang, Y. (2013) Critical Role of CXCL16 in Hypertensive Kidney Injury and Fibrosis. Hypertension, 62, 1129-1137. [Google Scholar] [CrossRef]
|
|
[14]
|
Xia, Y., Jin, X., Yan, J., et al. (2014) CXCR6 Plays a Critical Role in Angiotensin II-Induced Renal Injury and Fibrosis. Arteriosclerosis, Thrombosis and Vascular Biology, 34, 1422-1428. [Google Scholar] [CrossRef]
|
|
[15]
|
Endlich, N. and Endlich, K. (2012) The Challenge and Response of Podocytes to Glomerular Hypertension. Seminars in Nephrology, 32, 327-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shi, J., Wang, X., Nguyen, J., et al. (2016) Sacubitril Is Se-lectively Activated by Carboxylesterase 1 (CES1) in the Liver and the Activation Is Affected by CES1 Genetic Variation. Drug Metabolism and Disposition, 44, 554-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Andersen, M.B., Simonsen, U., Wehland, M., et al. (2016) LCZ696 (Valsartan/Sacubitril)—A Possible New Treatment for Hypertension and Heart Failure. Basic & Clinical Pharmacology & Toxicology, 118, 14-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zietse, R. (2005) Atrial Natriuretic Peptide: A Regulator of Transvascular Fluid Transport in Dialysis? Blood Purification, 23, 429-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Esser, N. and Zraika, S. (2019) Neprilysin Inhibition: A New Therapeutic Option for Type 2 Diabetes? Diabetologia, 62, 1113-1122. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Packer, M. (2018) Role of the Sodium-Hydrogen Exchanger in Mediating the Renal Effects of Drugs Commonly Used in the Treatment of Type 2 Diabetes. Diabetes, Obesity and Metabolism, 20, 800-811. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Procopio, P.R., Gaubeur, M.A., Itezerote, A.M., et al. (2020) Anatomical Study of the Innervation of the Masseter Muscle and Its Correlation with Myofascial Trigger Points. Journal of Pain Re-search, 13, 3217-3226. [Google Scholar] [CrossRef]
|
|
[22]
|
Lin, L.M., Wu, Y., Wu, M.F., et al. (2016) Focus on the Novel Cardio-vascular Drug LZC696: from Evidence to Clinical Consideration. Cardiovascular Drugs and Therapy, 30, 623-633. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Uijl, E., Roksnoer L, et al. (2020) Angiotensin-Neprilysin Inhibi-tion Confers Renoprotection in Rats with Diabetes and Hypertension by Limiting Podocyte Injury. Journal of Hyperten-sion, 38, 755-764. [Google Scholar] [CrossRef]
|
|
[24]
|
Unger, T., Borghi, C., Charchar, F., et al. (2020) 2020 In-ternational Society of Hypertension Global Hypertension Practice Guidelines. Journal of Hypertension, 38, 982-1004. [Google Scholar] [CrossRef]
|
|
[25]
|
中国医疗保健国际交流促进会高血压分会, 中国医师协会心血管分会, 中国高血压联盟, 等. 沙库巴曲缬沙坦在高血压患者临床应用的中国专家建议[J]. 中华高血压杂志, 2021, 29(2): 108-114.
|