|
[1]
|
R. P. Feynman. There’s plenty of room at the bottom—an invitation to enter a new field of physics[EB/OL].
HHHHHHHHHHHHHhttp://www.zyvex.com/nanotech/feynman.htmlHHHHHHHHHHHHH.
|
|
[2]
|
Y. Z. Shen, C. S. Friend, Y. Jiang, et al. Nanophotonics: interactions, materials, and applications. J. Phys. Chem. B, 2000, 104(32): 7577-7587.
|
|
[3]
|
Y. Shen, P. N. Prasad. Nanophotonics: a new multidisciplinary frontier. HHHHHHHHHHHHHApplied Physics B: Lasers and OpticsHHHHHHHHHHHHH, 2002, 74(7-8): 641-645.
|
|
[4]
|
P. Michler, A. Kiraz, C. Becher, et al. A quantum dot single-photon turn-stile device. Science, 2000, 290(5500): 2282- 2285.
|
|
[5]
|
C. Santori, D. Fattal, J. Vučković, et al. Indistinguishable photons from a sin-gle-photon device. Nature, 2002, 419(6907): 594- 597.
|
|
[6]
|
Z. L. Yuan, B. E. Kardynal, R. M. Stevenson, et al. Electrically driven sin-gle-photon source. Science, 2002, 295(5552): 102- 105.
|
|
[7]
|
F. Sotier, T. Thomay, T. Hanke, et al. Femtosecond few-fermion dynamics and deterministic single-photon gain in a quantum dot. Nat. Phys., 2009, 5(5): 352-356.
|
|
[8]
|
S. Kako, C. Santori, K. Hoshino, et al. A gal-lium-nitride single-photon source operating at 200 K. Nat. Mater., 2006, 5(11): 887-892.
|
|
[9]
|
X. Q. Li, Y. W. Wu, D. C. Steel, et al. An all-optical quantum gate in a semiconductor quantum dot. Science, 2003, 301(5634): 809-811.
|
|
[10]
|
R. B. Patel, A. J. Bennett, I. Farrer, et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics, 2010, 4(9): 632-635.
|
|
[11]
|
J. R. Lakowicz, I. Gryczynski, G. Piszczek, et al. Emission spectral proper-ties of cadmium sulfide nanoparticles with multiphoton Excitation. J. Phys. Chem. B, 2002, 106(21): 5365 -5370.
|
|
[12]
|
B. Fisher, J. M. Caruge, D. Zehnder, et al. Room-temperature ordered photon emission from multiexciton states in single CdSe core-shell nanocrystals. Phys. Rev. Lett., 2005, 94(8), p.087403.
|
|
[13]
|
S. A. Empedocles, D. J. Norris, M. G. Bawendi. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett., 1996, 77(18): 3873-3876.
|
|
[14]
|
S. A. Empedocles, M. G. Bawendi. Quan-tum-confined stark effect in single CdSe nanocrystallite quantum dots. Science, 1997, 278(5346): 2114-2117.
|
|
[15]
|
V. I. Klimov, A. A. Mik-hailovsky, S. Xu, et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science, 2000, 290(5490): 314-317.
|
|
[16]
|
X. Y. Wang, L. H. Qu, J. Y. Zhang, et al. Surface-related emission in highly luminescent CdSe quantum dots. Nano Lett., 2003, 3(8): 1103-1106.
|
|
[17]
|
D. Pacifici, H. J. Lezec, H. A. Atwater. All-optical modulation by plasmonic excitation of CdSe quantum dots. Nat. Photonics, 2007, 1(7): 402-406.
|
|
[18]
|
A. V. Akimov, A. Mukherjee, C. L. Yu, et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007, 450(7168): 402-406.
|
|
[19]
|
R. Beaulac, L. Schneider, P. I. Archer, et al. Light-induced spontaneous magnetization in doped colloidal quantum dots. Science, 2009, 325(5943): 973-976.
|
|
[20]
|
Z. Y. Tang, N. A. Kotov, M. Giersig. Spontaneous organization of single CdTe nanopar-ticles into luminescent nanowires. Science, 2002, 297(5579): 237-240.
|
|
[21]
|
J. Y. Zhang, X. Y. Wang, M. Xiao, et al. Modified spontaneous emission of CdTe quantum dots inside a photonic crystal. Opt. Lett., 2003, 28(16): 1430-1432.
|
|
[22]
|
V. D. Kulakovskii, G. Bacher, R. Weigand, et al. Fine structure of biexciton emission in symmetric and symmetric CdSe/ZnSe single quantum dots. Phys. Rev. Lett., 1999, 82(8): 1780-1783.
|
|
[23]
|
Q. Sun, Y. A. Wang, L. S. Li, et al. Bright, multicoloured light-emitting diodes based on quantum dots. Nat. Photonics, 2007, 1(11): 717-722.
|
|
[24]
|
G. S. Solomon, M. Pelton, Y. Yamamoto. Single-mode spontaneous emission from a single quantum dot in a three-dimensional microcavity. Phys. Rev. Lett., 2001, 86(17): 3903-3906.
|
|
[25]
|
E. Moreau, I. Robert, L. Manin, et al. Quantum cas-cade of photons in semiconductor quantum dots. Phys. Rev. Lett., 2001, 87(18), p.183601.
|
|
[26]
|
S. Kan, T. Mokari, E. Rothenberg, et al. Syn-thesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nat. Mater., 2003, 2(2): 155-158.
|
|
[27]
|
E. A. Stinaff, M. Scheibner, A. S. Bracker, et al. Optical signatures of coupled quantum dots. Science, 2006, 311(5761): 636-639.
|
|
[28]
|
O. I. Mićić, J. Sprague, Z. H. Lu, et al. Highly efficient band-edge emission from InP quantum dots. Appl. Phys. Lett., 1996, 68(22): 3150-3152.
|
|
[29]
|
H. X. Fu, A. Zunger. InP quantum dots: electronic structure, surface effects, and the redshifted emission. Phys. Rev. B, 1997, 56(3): 1496-1508.
|
|
[30]
|
L. Harris, D. J. Mowbray, M. S. Skolnick, et al. Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers. Appl. Phys. Lett., 1998, 73(7): 969-971.
|
|
[31]
|
W. Fang, J. Y. Xu, A. Yamilov, et al. Large enhancement of spontaneous emission rates of InAs quan-tum dots in GaAs microdisks. Opt. Lett., 2002, 27(11): 948-950.
|
|
[32]
|
E. S. Moskalenko, F. K. Karlsson, V. T. Donchev, et al. Effects of separate carrier generation on the emission properties of InAs/GaAs quantum dots. Nano Lett., 2005, 5(11): 2117-2122.
|
|
[33]
|
P. Borri, W. Langbein, S. Schneider, et al. Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett., 2001, 87(15), p. 157401.
|
|
[34]
|
H. Kamada, H. Gotoh, J. Temmyo, et al. Exciton Rabi oscillation in a single quantum dot. Phys. Rev. Lett., 2001, 87(24), p. 246401.
|
|
[35]
|
A. Högele, S. Seidl, M. Kroner, et al. Voltage -controlled optics of a quantum dot. Phys. Rev. Lett., 2004, 93(21), p.217401.
|
|
[36]
|
Y. Narukawa, Y. Kawakami, M. Funato, et al. Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm. Appl. Phys. Lett., 1997, 70(8): 981-983.
|
|
[37]
|
T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, et al. Spontaneous emission spectrum in double quantum dot devices. Science, 1998, 282(5390): 932-935.
|
|
[38]
|
D. Kovalev, H. Heckler, B. Averboukh, et al, Hole burning spectroscopy of porous silicon. Phys. Rev. B, 1998, 57(7): 3741-3744.
|
|
[39]
|
M. Cazzanelli, D. Kovalev, L. D. Negro, et al. Polarized optical gain and polarization-narrowing of heavily oxidized porous silicon. Phys. Rev. Lett., 2004, 93(20), p. 207402.
|
|
[40]
|
D. Kovalev, H. Heckler, M. Ben-Chorin, et al. Break-down of the k-conservation rule in Si nanocrystals. Phys. Rev. Lett., 1998, 81(13): 2803-2806.
|
|
[41]
|
L. Bagolini, A. Mattoni, G. Fugallo, et al. Quantum confinement by an order-disorder boundary in nanocrys-talline silicon. Phys. Rev. Lett., 2010, 104(17), p.176803.
|
|
[42]
|
M. Fuechsle, S. Mahapatra, F. A. Zwanenburg, et al. Spectroscopy of few-electron single-crystal silicon quantum dots. Nat. Nanotechnol., 2010, 5(7): 502-505.
|
|
[43]
|
I. Sychugov, R. Juhasz, J. Valenta, et al. Narrow luminescence linewidth of a silicon quantum dot. Phys. Rev. Lett., 2005, 94(8), p. 087405.
|
|
[44]
|
N. M. Park, C. J. Choi, T. Y. Seong, et al. Quantum confinement in amorphous silicon quantum dots em-bedded in silicon nitride. Phys. Rev. Lett., 2001, 86(7): 1355-1357.
|
|
[45]
|
A. G. Curto, G. Volpe, T. H. Taminiau, et al. Unidi-rectional emission of a quantum dot coupled to a nanoantenna. Science, 2010, 329(5994): 930-933.
|
|
[46]
|
J. Bleuse, J. Claudon, M. Creasey, et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett., 2011, 106(10), p.103601.
|
|
[47]
|
J. D. Holmes, K. P. Johnston, R. C. Doty, et al. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287(5457): 1471-1473.
|
|
[48]
|
G. P. Lansbergen, R. Rahman, C. J. Wel-lard, et al. Gate-induced quantum-confinement transition of a single dopant atom in a silicon FinFET. Nat. Phys., 2008, 4(8): 656-661.
|
|
[49]
|
X. S. Peng, G. W. Meng, J. Zhang, et al. Strong quantum con-finement in ordered PbSe nanowire arrays. Journal of Materials Re-search, 2002, 17(6): 1283-1286.
|
|
[50]
|
F. W. Wise. Lead salt quantum dots: the limit of strong quantum confinement. Acc. Chem. Res., 2000, 33(11): 773-780.
|
|
[51]
|
J. F. Wang, M. S. Gudiksen, X. F. Duan, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293(5534): 1455-1457.
|
|
[52]
|
M. H. Huang, S. Mao, H. Feick, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897- 1899.
|
|
[53]
|
P. D. Yang, H. Q. Yan, S. Mao, et al. Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater., 2002, 12(5): 323-331.
|
|
[54]
|
H. Q. Yan, R. R. He, J. Johnson, et al. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc., 2003, 125(16): 4728-4729.
|
|
[55]
|
J. C. Johnson, H. Q. Yan, R. D. Schaller, et al. Single nanowire lasers. J. Phys. Chem. B, 2001, 105(46): 11387-11390.
|
|
[56]
|
J. C. Johnson, H. J. Choi, K. P. Knutsen, et al. Single gallium nitride nanowire lasers. Nat. Mater., 2002, 1(2): 106-110.
|
|
[57]
|
R. Chen, T. T. D. Tran, K. W. Ng, et al. Nanolasers grown on silicon. Nat. Photonics, 2011, 5(3): 170-175.
|
|
[58]
|
N. F. Yu, J. Fan, Q. J. Wang, et al. Small-divergence semiconductor lasers by plasmonic collimation. Nat. Photonics, 2008, 2(7): 564-570.
|
|
[59]
|
M. A. Noginov, G. Zhu, A. M. Belgrave, et al. Demonstration of a spaser-based nanolaser. Nature, 2009, 460(7259): 1110-1112.
|
|
[60]
|
R. F. Service. Ever-smaller lasers pave the way for data highways made of light. Science, 2010, 328(5980): 810-811.
|
|
[61]
|
Y. Huang, X. F. Duan, C. M. Lieber. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1(1): 142-147.
|
|
[62]
|
Y. Taniyasu, M. Kasu, T. Makimoto. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature, 2006, 441(7091): 325-328.
|
|
[63]
|
S. L. M. van Mensfoort, M. Carvelli, M. Megens, et al. Measuring the light emission profile in organic light-emitting diodes with nanometre spatial resolu-tion. Nat. Photonics, 2010, 4(3): 329-335.
|
|
[64]
|
M. Quinten, A. Leit-ner, J. R. Krenn, et al. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett., 1998, 23(17): 133-1333.
|
|
[65]
|
S. A. Maier, P. G. Kik, H. A. Atwater, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater., 2003, 2(4): 229-232.
|
|
[66]
|
J. C. Weeber, A. Dereux, C. Girard, et al. Plasmon polaritons of metallic nanowires for controlling submicron propagation of light. Phys. Rev. B, 1999, 60(12): 9061-9068.
|
|
[67]
|
S. I. Bozhevol-nyi, J. Erland, K. Leosson, et al. Waveguiding in surface plasmon po-lariton band gap structures. Phys. Rev. Lett., 2001, 86(14): 3008-3011.
|
|
[68]
|
R. F. Oulton, V. J. Sorger, D. A. Genov, et al. A hybrid plas-monic waveguide for subwavelength confinement and long range propagation. Nat. Photonics, 2008, 2(8): 496-500.
|
|
[69]
|
A. L. Pyayt, B. Wiley, Y. N. Xia, et al. Integration of photonic and silver nanowire plasmonic waveguides. Nat. Nanotechnol., 2008, 3(10): 660-665.
|
|
[70]
|
S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508-511.
|
|
[71]
|
P. Nagpal, N. C. Lindquist, S. H. Oh, et al. Ultrasmooth patterned metals for plasmonics and metamaterials. Science, 2009, 325(5940): 594-597.
|
|
[72]
|
H. J. Lezec, A. Degiron, E. Devaux, et al. Beaming light from a subwavelength aperture. Science, 2002, 297(5582): 820-822.
|
|
[73]
|
G. Lerosey, D. F. P. Pile, P. Matheu, et al. Controlling the phase and amplitude of plasmon sources at a subwave-length scale. Nano Lett., 2009, 9(1): 327-331.
|
|
[74]
|
A. F. Koenderink. Plasmon nanoparticle array waveguides for single photon and single plasmon sources. Nano Lett., 2009, 9(12): 4228-4233.
|
|
[75]
|
R. F. Oul-ton, V. J. Sorger, T. Zentgraf, et al. Plasmon lasers at deep subwave-length scale. Nature, 2009, 461(7264): 629-632.
|
|
[76]
|
Z. Y. Fang, Q. A. Peng, W. T. Song, et al. Plasmonic focusing in symmetry broken nanocorrals. Nano Lett., 2011, 11(2): 893-897.
|
|
[77]
|
M. Achermann, K. L. Shuford, G. C. Schatz, et al. Near-field spectroscopy of surface plasmons in flat gold nanoparticles. Opt. Lett., 2007, 32(15): 2254-2256.
|
|
[78]
|
S. Kim, J. H. Jin, Y. J. Kim, et al. High-harmonic generation by resonant plasmon field enhancement. Nature, 2008, 453(7196): 757-760.
|
|
[79]
|
M. Schnell, A. Garcia-Etxarri, A. J. Huber, et al. Controlling the near-field oscillations of loaded plasmonic nano-antennas. Nat. Photonics, 2009, 3(4): 287-291.
|
|
[80]
|
S. Kawata, Y. Inouye, P. Verma. Plasmonics for near-field nano-imaging and super-lensing. Nature Photonics, 2009, 3(7): 388-394.
|
|
[81]
|
A. C. R. Pipino, R. P. VanDuyne, G. C. Schatz. Surface -enhanced second-harmonic diffraction: Experimental investigation of selective enhancement. Phys. Rev. B, 1996, 53(7): 4162-4169.
|
|
[82]
|
S. M. Nie, S. R. Emery. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 1997, 275(5303): 1102-1106.
|
|
[83]
|
Y. Fang, N. H. Seong, D. D. Dlott. Measurement of the distribution of site enhance-ments in surface-enhanced Raman scattering. Science, 2008, 321(5887): 388-392.
|
|
[84]
|
A. Gopinath, S. V. Boriskina, W. R. Premasiri, et al. Plasmonic nanogalaxies: multiscale aperiodic arrays for sur-face-enhanced raman sensing. Nano Lett., 2009, 9(11): 3922-3929.
|
|
[85]
|
Y. R. Fang, H. Wei, F. Hao, et al. Remote-excitation surface- enhanced raman scattering using propagating Ag nanowire plasmons. Nano Lett., 2009, 9(5): 2049-2053.
|
|
[86]
|
C. Hermann, V. A. Kosobukin, G. Lampel, et al. Surface-enhanced magneto-optics in metallic multilayer films. Phys. Rev. B, 2001, 64(23), p. 235422.
|
|
[87]
|
P. Zijlstra, J. W. M. Chon, M. Gu. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 2009, 459(7245): 410-413.
|
|
[88]
|
D. O'Connor, A. V. Zayats. Data storage: the third plasmonic revolution. Nat. Nanotechnol., 2010, 5(7): 482-483.
|
|
[89]
|
M. Westphalen, U. Kreibig, J. Rostalski, et al. Metal cluster enhanced organic solar cells. Sol. Energ. Mat. Sol. C, 2000, 61(1): 97-105.
|
|
[90]
|
V. E. Ferry, L. A. Sweatlock, D. Pacifici, et al. Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett., 2008, 8(12): 4391-4397.
|
|
[91]
|
M. D. Brown, T. Suteewong, R. S. S. Kumar, et al. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles. Nano Lett., 2011,11(2): 438-445.
|
|
[92]
|
F. Goettmann, A. Moores, C. Boissière, et al. A selec-tive chemical sensor based on the plasmonic response of phosphi-nine-stabilized gold nanoparticles hosted on periodically organized mesoporous silica thin layers. Small, 2005, 1(6): 636-639.
|
|
[93]
|
J. Homola, S. S. Yee, G. Gauglitz. Surface plasmon resonance sensors: review. Sensors Actuat. B, 1999, 54(1-2): 3-15.
|
|
[94]
|
S. J. Chen, F. C. Chien, G. Y. Lin, et al. Enhancement of the resolution of surface plas-mon resonance biosensors by control of the size and distribution of nanoparticles. Opt. Lett., 2004, 29(12): 1390-1392.
|
|
[95]
|
J. N. Anker, W. P. Hall, O. Lyandres, et al. Biosensing with plasmonic nanosensors. Nat. Mater., 2008, 7(6): 442-453.
|
|
[96]
|
A. V. Kabashin, P. Evans, S. Pastkovsky, et al. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 2009, 8(11): 867-871.
|
|
[97]
|
E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059- 2062.
|
|
[98]
|
S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23): 2486- 2489.
|
|
[99]
|
O. Painter, R. K. Lee, A. Scherer, et al. Two-dimensional photonic band-gap defect mode laser. Science, 1999, 284(5421): 1819-1821.
|
|
[100]
|
S. Inoue1, Y. Aoyagi. Design and fabrica-tion of two-dimensional photonic crystals with predetermined nonlinear optical properties. Phys. Rev. Lett., 2005, 94(10), p. 103904.
|
|
[101]
|
S. Y. Lin, J. G. Fleming, D. L. Hetherington, et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature, 1998, 394(6690): 251-253.
|
|
[102]
|
E. Chow, S. Y. Lin, S. G. Johnson, et al. Three-dimensional control of light in a two-dimensional photonic crys-tal slab. Nature, 2000, 407(6807): 983-986.
|
|
[103]
|
S. Noda, K. Tomoda, N. Yamamoto, et al. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science, 2000, 289(5479): 604-606.
|
|
[104]
|
J. G. Fleming, S. Y. Lin, I. El-Kady, et al, All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature, 2002, 417(6884): 52-55.
|
|
[105]
|
M. Campbell, D. N. Sharp, M. T. Harrison, et al. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature, 2000, 404(6773): 53-56.
|
|
[106]
|
H. Matsubara, S. Yoshimoto, H. Saito, et al. GaN photonic- crystal sur-face-emitting laser at blue-violet wavelengths. Science, 2008, 319(5862): 445-447.
|
|
[107]
|
B. Corcoran, C. Monat, C. Grillet, et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photonics, 2009, 3(4): 206- 210.
|
|
[108]
|
A. Yamilov, X. Wu, X. Liu, et al. Self-optimization of optical confinement in an ultraviolet photonic crystal slab laser. Phys. Rev. Lett., 2006, 96(8), p.083905.
|
|
[109]
|
J. C. Knight. Photonic crystal fibres. Nature, 2003, 424(6950): 847-851.
|
|
[110]
|
R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-mode photonic band gap guidance of light in air. Science, 1999, 285(5433): 1537-1539.
|
|
[111]
|
Y. Kurosaka, S. Iwahashi, Y. Liang, et al. On-chip beam-steering photonic-crystal lasers. Nat. Photonics, 2010, 4(7): 447-450.
|
|
[112]
|
A. Tandaechanurat, S. Ishida, D. Guimard, et al. Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap. Nat. Photonics, 2011, 5(2): 91-94.
|
|
[113]
|
S. Ogawa, M. Imada, S. Yoshimoto, et al. Control of light emission by 3D photonic crystals. Science, 2004, 305(5681): 227- 229.
|
|
[114]
|
J. E. G. J. Wijnhoven, W. L. Vos. Prepara-tion of photonic crystals made of air spheres in titania. Science, 1998, 281(5378): 802-804.
|
|
[115]
|
P. V. Braun, P. Wiltzius. Microporous materials: Electrochemically grown photonic crystals. Nature, 1999, 402(6762): 603-604.
|
|
[116]
|
A. Blanco, E. Chomski, S. Grabtchak, et al. Large-scale synthesis of a silicon photonic crystal with a complete three- dimensional bandgap near 1.5 micrometres. Nature, 2000, 405(6785): 437-440.
|
|
[117]
|
Y. A. Vlasov, X. Z. Bo, J. C. Sturm, et al. On-chip natural assembly of silicon photonic bandgap crystals. Nature, 2001, 414(6861): 289-293.
|
|
[118]
|
J. G. Fleming, S. Y. Lin. Three-dimensional photonic crystal with a stop band from 1.35 to 1.95 mm. Opt. Lett., 1999, 24(1): 49-51.
|
|
[119]
|
O. Toader, S. John. Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals. Science, 2001, 292(5519): 1133-1135.
|
|
[120]
|
M. H. Qi, E. Lidorikis, P. T. Rakich, et al. A three-dimensional optical photonic crystal with designed point defects. Nature, 2004, 429(6991): 538-542.
|
|
[121]
|
S. Takahashi, K. Suzuki, M. Okano, et al. Direct creation of three-dimensional photonic crystals by a top-down approach. Nat. Mater., 2009, 8(9): 721-725.
|
|
[122]
|
K. Ishi-zaki, S. Noda. Manipulation of photons at the surface of three-dimensional photonic crystals. Nature, 2009, 460(7253): 367-370.
|
|
[123]
|
G. R. Bird, M. Parrish. The wire grid as a near-infrared polarizer. J. Opt. Soc. Am., 1960, 50(9): 886-891.
|
|
[124]
|
J. B. Young, H. A. Graham, E. W. Peterson. Wire grid infrared polarizer. Appl. Opt., 1965, 4(8): 1023-1026.
|
|
[125]
|
H. Tamada, T. Doumuki, T. Yamaguchi, et al. Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-m-wavelength band. Opt. Lett., 1997, 22(6): 419-421.
|
|
[126]
|
T. Doumuki, H. Tamada. An aluminum-wire grid polarizer fabricated on a gallium-arsenide photodiode. Appl. Phys. Lett., 1997, 71(5): 686-688.
|
|
[127]
|
J. J. Wang, W. Zhang, X. Deng, et al. High-performance nanowire-grid polarizers. Opt. Lett., 2005, 30(2): 195-197.
|
|
[128]
|
Y. B. Lin, J. P. Guo, R. G. Lindquist. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip. Opt. Express, 2009, 17(20): 17849-17854.
|
|
[129]
|
Y. T. Pang, G. W. Meng, L. D. Zhang, et al. Arrays of ordered Pb nanowires and their optical prop-erties for laminated polarizers. Adv. Funct. Mater., 2002, 12(10): 719-722.
|
|
[130]
|
Y. T. Pang, G. W. Meng, Q. Fang, et al. Silver nanowire array infrared polarizers. Nanotechnology, 2003, 14(1): 20-24.
|
|
[131]
|
J. X. Zhang, L. D. Zhang, C. H. Ye, et al. Polarization properties of or-dered copper nanowire microarrays embedded in anodic alumina mem-brane. Chem. Phys. Lett., 2004, 400(1-3): 158-162.
|
|
[132]
|
J. X. Zhang, Y. G. Yan, L. D. Zhang, et al. Microarrays of silver nanowires embed-ded in anodic alumina membrane templates: size dependence of po-larization characteristics. Appl. Opt., 2006, 45(2): 297-304.
|