|
[1]
|
Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.-P., Capasso, F. and Gaburro, Z. (2011) Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science, 334, 333-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Huang, L., Chen, X., Muhlenbernd, H., Li, G., Bai, B., Tan, Q., et al. (2012) Dispersionless Phase Discontinuities for Controlling Light Propagation. Nano Letters, 12, 5750-5755. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, X., Huang, L., Muhlenbernd, H., Li, G., Bai, B., Tan, Q., et al. (2012) Du-al-Polarity Plasmonic Metalens for Visible Light. Nature Communications, 3, Article No. 1198. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Khorasaninejad, M., Chen, W., Devlin, R., Oh, J., Zhu, A.Y. and Capasso, F. (2016) Metalenses at Visible Wavelengths: Diffraction-Limited Focusing and Subwavelength Resolution Imaging. Science, 352, 1190-1194. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lin, R., Sun, V., Wang, S., Chen, M., Chung, T., Chen, Y., et al. (2019) Achromatic Metalens Array for Full-Colour Light-Field Imaging. Nature Nanotechnology, 14, 227-231. [Google Scholar] [CrossRef]
|
|
[6]
|
Zang, X.F., Ding, H.Z., Intaravanne, Y., Chen, L., Peng, Y., Xie, J.Y., et al. (2019)A Multi-Foci Metalens with Polarization-Rotated Focal Points. Laser & Photonics Reviews, 13, Article ID: 1900182. [Google Scholar] [CrossRef]
|
|
[7]
|
Zang, X.F., Xu, W.W., Gu, M., Yao, B.S., Chen, L., Peng, Y., et al. (2020) A Multi-Foci Metalens with Polarization-Rotated Focal Points. Advanced Optical Materials, 8, Article ID: 1901342. [Google Scholar] [CrossRef]
|
|
[8]
|
Zhang, Z.R., Yang, Q.L., Gong, M.H., Chen, M. and Long, Z.W. (2020) Metasurface Lens with Angular Modulation for Extended Depth of Focus Imaging. Optics Letters, 45, 611-614. [Google Scholar] [CrossRef]
|
|
[9]
|
Ling, X.H., Zhou, X.X., Yi, X.N., Shu, W.X., Liu, Y.C., Chen, S.Z., et al. (2015) Giant Photonic Spin Hall Effect in Momentum Space in a Structured Metamaterial with Spatially Varying Birefringence. Light: Science & Applications, 4, e290. [Google Scholar] [CrossRef]
|
|
[10]
|
Zheng, G., Muhlenbernd, H., Kenney, M., Li, G., Zentgraf, T. and Zhang, S. (2015) Metasurface Holograms Reaching 80% Efficiency. Nature Nanotechnology, 10, 308-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wen, D., Yue, D.F., Li, G., Zheng, G., Chan, K., Chen, S., et al. (2015) Helic-ity Multiplexed Broadband Metasurface Holograms. Nature Communications, 6, Article No. 8241. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jin, L., Dong, Z., Mei, S., Yu, Y., Wei, Z., Pan, Z., et al. (2018) Noninterleaved Metasurface for (26-1) Spin- and Wavelength-Encoded Holograms. Nano Letters, 18, 8016-8024. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hu, G., Hong, X., Wang, K., Wu, J., Xu, H.-X., Zhao, W., et al. (2019) Coherent Steering of Nonlinear Chiral Valley Photons with a Synthetic Au-WS2 Metasurface. Nature Photonics, 13, 467-472. [Google Scholar] [CrossRef]
|
|
[14]
|
Lee, S., Kim, S., Won, H. and Lee, B. (2015) Spin-Direction Control of High-Order Plasmonic Vortex with Double- Ring Distributed Nanoslits. IEEE Photonics Technology Letters, 27, 705-708. [Google Scholar] [CrossRef]
|
|
[15]
|
Tan, Q., Guo, Q., Liu, H., Huang, X. and Zhang, S. (2017) Controlling the Plasmonic Orbital Angular Momentum by Combining the Geometric and Dynamic Phases. Nanoscale, 9, 4944-4949. [Google Scholar] [CrossRef]
|
|
[16]
|
Lin, J., Mueller, J.P.B., Wang, Q., Yuan, G., Antoniou, N., Yuan, X. and Ca-passo, F. (2013) Polarization-Controlled Tunable Directional Coupling of Surface Plasmon Polaritons. Science, 340, 331-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zang, X., Dong, F., Yue, F., Zhang, C., Xu, L., Song, Z., et al. (2018) Po-larization Encoded Color Image Embedded in a Dielectric Metasurface. Advanced Materials, 30, Article ID: 1707499. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lang, Y., Xu, Q., Chen, X., Han, J., Jiang, X., Xu, Y., et al. (2022) On-Chip Plasmonic Vortex Interferometers. Laser & Photonics Reviews, 16, Article ID: 2200242. [Google Scholar] [CrossRef]
|
|
[19]
|
Liu, F., Wang, D., Zhu, H., Zhang, X., Liu, T., Sun, S., et al. (2023) High-Efficiency Metasurface-Based Surface-Plasmon Lenses. Laser & Photonics Reviews, 2023, Article ID: 2201001. [Google Scholar] [CrossRef]
|
|
[20]
|
Chen, W., Abeysinghe, D.C., Nelson, R.L. and Zhan, Q. (2010) Experi-mental Confirmation of Miniature Spiral Plasmonic Lens as a Circular Polarization Analyzer. Nano Letters, 10, 2075-2079. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Heeres, R. and Zwiller, V. (2014) Subwavelength Focusing of Light with Orbital Angular Momentum. Nano Letters, 14, 4598-4601. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chen, C., Ku, C., Tai, Y., Wei, P., Lin, H. and Huang, C. (2015) Creating Optical Near-Field Orbital Angular Momentum in a Gold Metasurface. Nano Letters, 15, 2746-2750. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ren, H., Li, X.P., Zhang, Q.M. and Gu, M. (2016) On-Chip Noninterference Angular Momentum Multiplexing of Broadband Light. Science, 352, 805-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Zang, X.F., Zhu, Y.M., Mao, C.X., Xu, W.W., Ding, H.Z., Xie, J.Y., et al. (2019) Manipulating Terahertz Plasmonic Vortex Based on Geometric and Dynamic Phase. Advanced Optical Materials, 7, Ar-ticle ID: 1801328. [Google Scholar] [CrossRef]
|
|
[25]
|
An, X.-Q., Song, H.-S., Zeng, X.-Y., Gu, M.-N., Jiang, Z.-S., He, C.-W., et al. (2022) Arbitrary Superposition of Plasmonic Orbital Angular Momentum States with Nanostructures. Optics Letters, 47, 2032-2035. [Google Scholar] [CrossRef]
|