|
[1]
|
Falconer, K.J. (1990) Fractal Geometry: Mathematical Foundations and Applications. John
Wiley Sons Inc., New York. [Google Scholar] [CrossRef]
|
|
[2]
|
Besicovitch, A.S. and Ursell, H.D. (1937) Sets of Fractional Dimensions V: On Dimensional
Numbers of Some Continuous Curves. Journal of the London Mathematical Society, 12, 18-25.[CrossRef]
|
|
[3]
|
Barnsley, M.F. (1986) Fractal Functions and Interpolation. Constructive Approximation, 2,
303-329. [Google Scholar] [CrossRef]
|
|
[4]
|
Bedford, T.J. (1989) The Box Dimension of Self-Affine Graphs and Repellers. Nonlinearity, 2,
53-71. [Google Scholar] [CrossRef]
|
|
[5]
|
Ruan, H.J., Su, W.Y. and Yao, K. (2009) Box Dimension and Fractional Integral of Linear
Fractal Interpolation Functions. Journal of Approximation Theory, 161, 187-197.[CrossRef]
|
|
[6]
|
Liang, Y.S. (2017) Definition and Classification of One-Dimensional Continuous Functions
with Unbounded Variation. Fractals, 25, Article 17500487.[CrossRef]
|
|
[7]
|
Xie, T.F. and Zhou, S.P. (2004) On a Class of Fractal Functions with Graph Box Dimension
2. Chaos, Solitons and Fractals, 22, 135-139.[CrossRef]
|
|
[8]
|
Xie, T.F. and Zhou, S.P. (2007) On a Class of Singular Continuous Functions with Graph
Hausdorff Dimension 2. Chaos, Solitons and Fractals, 32, 1625-1630.[CrossRef]
|
|
[9]
|
Zheng, W.X. and Wang, S.W. (1980) Real Function and Functional Analysis. Higher Education
Press, Beijing.
|
|
[10]
|
王宏勇, 陈刚. Bush 型函数的分形维数及其奇异性 [J]. 数学研究, 1996, 29(1): 87-92.
|
|
[11]
|
Shen, W.X. (2018) Hausdorff Dimension of the Graphs of the Classical Weierstrass Functions.
Mathematische Zeitschrift, 289, 223-266. [Google Scholar] [CrossRef]
|
|
[12]
|
Zhang, Q. (2014) Some Remarks on One-Dimensional Functions and Their Riemann-Liouville
Fractional Calculus. Acta Mathematica Sinica, English Series, 30, 517-524.[CrossRef]
|
|
[13]
|
Wen, Z.Y. (2000) Mathematical Foundations of Fractal Geometry: Science Technology Education
Publication House, Shanghai.
|