学术期刊
切换导航
首 页
文 章
期 刊
投 稿
预 印
会 议
书 籍
新 闻
合 作
我 们
按学科分类
Journals by Subject
按期刊分类
Journals by Title
核心OA期刊
Core OA Journal
数学与物理
Math & Physics
化学与材料
Chemistry & Materials
生命科学
Life Sciences
医药卫生
Medicine & Health
信息通讯
Information & Communication
工程技术
Engineering & Technology
地球与环境
Earth & Environment
经济与管理
Economics & Management
人文社科
Humanities & Social Sciences
合作期刊
Cooperation Journals
首页
数学与物理
理论数学
Vol. 13 No. 5 (May 2023)
期刊菜单
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
最新文章
历史文章
检索
领域
编委
投稿须知
文章处理费
极大余挠模
Max-Cotorsion Modules
DOI:
10.12677/PM.2023.135138
,
PDF
,
HTML
,
,
被引量
作者:
杨娟妮
*
,
杨晓燕
:西北师范大学,数学与统计学院,甘肃 兰州
关键词:
极大余挠模
;
极大平坦模
;
余挠对br>Max-Cotorsion Module
;
Max-Flat Module
;
Cotorsion Pair
摘要:
本文研究了极大余挠模的一些判定和同调性质,证明了极大平坦模类与极大余挠模类构成了完全且遗传的余挠对。
Abstract:
In this paper, we study some criterions and homological properties of max-cotorsion modules. It is proved that the class of max-flat modules and the class of max-cotorsion modules is a perfect and hereditary cotorsion pair.
文章引用:
杨娟妮, 杨晓燕. 极大余挠模[J]. 理论数学, 2023, 13(5): 1355-1362.
https://doi.org/10.12677/PM.2023.135138
参考文献
[1]
Harrison, D.K. (1959) Infinite Abelian Groups and Homological Methods. Annals of Mathe- matics, 69, 336-391.
https://doi.org/10.2307/1970188
[2]
Xu J. (1996) Flat Covers of Modules. In: Lecture Notes in Mathematics, Vol. 1634, Springer- Verlag, Berlin.
[3]
Trlifaj, J. (2000) Covers, Envelopes and Cotorsion Theories. Lecture Notes for the Workshop "Homological Methods in Module Theory", Cortona, 10-16 September 2000.
[4]
Mao, L.X. and Ding, N.Q. (2005) Notes on Cotorsion Modules. Communications in Algebra, 33, 349-360.
https://doi.org/10.1081/AGB-200041029
[5]
Xiang, Y. (2010) Max-Injective, Max-Flat Modules and Max-Coherent Ring. Bulletin of the Korean Mathematical Society, 47, 611-622.
https://doi.org/10.4134/BKMS.2010.47.3.611
[6]
Alagoz, Y. and Buyukasik, E. (2021) On Max-Fat Modules and Max-Cotorsion Modules. Ap- plicable Algebra in Engineering, 32, 195-215.
https://doi.org/10.1007/s00200-020-00482-4
[7]
Enochs, E.E. and Jenda, O.M.G. (2000) Relative Homological Algebra. Walter de Gruyter, New York.
https://doi.org/10.1515/9783110803662
[8]
Enochs, E.E. (2002) Covers, Envelopes and Cotorsion Theories. Nova Biomedical, New York.
[9]
于梅菊, 方咏梅. 探研极大平坦维数[J]. 通化师范学院学报, 2010, 31(12): 11-13.
[10]
Rotman, J.J. (2009) An Introduction to Homological Algebra. Springer, New York.
https://doi.org/10.1007/b98977
[11]
Holm, H. and Jorgensen, P. (2008) Covers, Precovers, and Purity. Illinois Journal of Mathe- matics, 52, 691-703.
https://doi.org/10.1215/ijm/1248355359
投稿
为你推荐
友情链接
科研出版社
开放图书馆