|
[1]
|
Petersmann, A., Müller-Wieland, D., Müller, U.A., et al. (2019) Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology & Diabetes, 127, S1-S7. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Lovic, D., Piperidou, A., Zografou, I., et al. (2020) The Growing Epi-demic of Diabetes Mellitus. Current Vascular Pharmacology, 18, 104-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cole, J.B. and Florez, J.C. (2020) Genetics of Diabe-tes Mellitus and Diabetes Complications. Nature Reviews Nephrology, 16, 377-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hernandez-Ochoa, E.O., Llanos, P. and Lanner, J.T. (2017) The Underlying Mechanisms of Diabetic Myopathy. Journal of Diabetes Research, 2017, Article ID: 7485738. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Wagemann, J., Keller, S., Noriega, M.L.M., Stenzel, W., Schneider, U. and Krusche, M. (2022) A New Therapeutic Approach with Tocilizumab in a 39-Year-Old Patient with Recurrent Dia-betic Myonecrosis. Modern Rheumatology Case Reports, 6, 59-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gupta, S., Goyal, P., Sharma, P., Soin, P. and Kochar, P.S. (2018) Re-current Diabetic Myonecrosis—An Under-Diagnosed Cause of Acute Painful Swollen Limb in Long Standing Diabetics. Annals of Medicine and Surgery, 35, 141-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ghantarchyan, H.H., Gupta, S. and Arabian, S. (2023) An Ab-normal Case of Diabetic Myonecrosis: A Case Report and Review of Literature. Cureus, 15, e36050. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hirata, Y., Nomura, K., Senga, Y., et al. (2019) Hyperglycemia Induces Skeletal Muscle Atrophy via a WWP1/KLF15 axis. JCI Insight, 4, Article ID: 124952. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lee, Y.J., Kim, G.H., Park, S.I. and Lim, J.H. (2020) Down-Regulation of the Mitochondrial i-AAA Protease Yme1L Induces Muscle Atrophy via FoxO3a and Myostatin Activation. Journal of Cellular and Molecular Medicine, 24, 899- 909. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Langer, H.T. (2017) Master and Commander? FoxO’s Role in Muscle Atrophy. Journal of Physiology-London, 595, 4593-4594. [Google Scholar] [CrossRef]
|
|
[11]
|
Arcaro, C.A., Assis, R.P., Oliveira, J.O., et al. (2021) Phosphodiesterase 4 Inhibition Restrains Muscle Proteolysis in Diabetic Rats by Activating PKA and EPAC/Akt Effectors and Inhibiting FoxO Factors. Life Sciences, 278, Article ID: 119563. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Reddy, S.S., Shruthi, K., Prabhakar, Y.K., Sailaja, G. and Reddy, G.B. (2018) Implication of Altered Ubiquitin- Proteasome System and ER Stress in the Muscle Atrophy of Diabetic Rats. Archives of Biochemistry and Biophysics, 639, 16-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cohen, S. (2020) Role of Calpains in Promoting Desmin Filaments Depolymerization and Muscle Atrophy. Biochimica et Biophys-ica Acta (BBA)—Molecular Cell Research, 1867, Article ID: 118788. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Okun, J.G., Rusu, P.M., Chan, A.Y., et al. (2021) Liver Ala-nine Catabolism Promotes Skeletal Muscle Atrophy and Hyperglycaemia in Type 2 Diabetes. Nature Metabolism, 3, 394-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Surinlert, P., Thitiphatphuvanon, T., Khimmaktong, W., et al. (2021) Hyperglycemia Induced C2C12 Myoblast Cell Cycle Arrest and Skeletal Muscle Atrophy by Modulating Sirtuins Gene Expression in Rats. The Polish Journal of Veterinary Sciences, 24, 563-572.
|
|
[16]
|
Zheng, L.F., Chen, P.J., Zhou, Y.Z., et al. (2017) [Fat Deposition in Skeletal Muscle and Its Regulation]. Acta physiologica Sinica, 69, 344-350. (In Chinese)
|
|
[17]
|
Almurdhi, M.M., Reeves, N.D., Bowling, F.L., et al. (2017) Distal Lower Limb Strength Is Reduced in Subjects with Impaired Glucose Tolerance and Is Related to Elevated Intramuscular Fat Level and Vitamin D Defi-ciency. Diabetic Medicine, 34, 356-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, L. and Shan, T. (2021) Factors Inducing Transdifferentiation of Myoblasts into Adipocytes. Journal of Cellular Physiology, 236, 2276-2289. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Narasimhulu, C.A. and Singla, D.K. (2021) BMP-7 Ameliorates Lipid Ac-cumulation Induced, Hmgb1 Initiated Pyroptosis Leading To Sarcopenia, Muscle Deterioration and Adverse Muscle Remodeling In Diabetes. Circulation, 144, A14193.
|
|
[20]
|
Farup, J., Just, J., De Paoli, F., et al. (2021) Human Skeletal Muscle CD90 Fibro-Adipogenic Progenitors Are Associated with Muscle Degeneration in Type 2 Diabetic Patients. Cell Metabolism, 33, 2201-2214. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gumucio, J.P., Qasawa, A.H., Ferrara, P.J., et al. (2019) Reduced Mitochondrial Lipid Oxidation Leads to Fat Accumulation in Myosteatosis. The FASEB Journal, 33, 7863-7881. [Google Scholar] [CrossRef]
|
|
[22]
|
Mahdy, M.A. (2018) Glycerol-Induced Injury as a New Model of Muscle Regeneration. Cell and Tissue Research, 374, 233-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Romanello, V. and Sandri, M. (2021) The Connection between the Dynamic Remodeling of the Mitochondrial Network and the Regulation of Muscle Mass. Cellular and Molecular Life Sciences, 78, 1305-1328. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wagner, S., Manickam, R., Brotto, M. and Tipparaju, S.M. (2022) NAD+ Centric Mechanisms and Molecular Determinants of Skeletal Muscle Disease and Aging. Molecular and Cellular Biochemistry, 477, 1829-1848. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Albers, P.H., Pedersen, A.J.T., Birk, J.B., et al. (2015) Human Muscle Fiber Type-Specific Insulin Signaling: Impact of Obesity and Type 2 Diabetes. Diabetes, 64, 485-497. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Monaco, C.M.F., Perry, C.G.R. and Hawke, T.J. (2017) Diabetic Myopa-thy: Current Molecular Understanding of This Novel Neuromuscular Disorder. Current Opinion in Neurology, 30, 545-552. [Google Scholar] [CrossRef]
|
|
[27]
|
Saliu, T.P., Kumrungsee, T., Miyata, K., et al. (2022) Comparative Study on Molecular Mechanism of Diabetic Myopathy in Two Different Types of Streptozotocin-Induced Diabetic Models. Life Sciences, 288, Article ID: 120183. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Baig, M.H., Jan, A.T., Rabbani, G., et al. (2017) Methylglyoxal and Advanced Glycation End Products: Insight of the Regulatory Machinery Affecting the Myogenic Program and of Its Modulation by Natural Compounds. Scientific Reports, 7, Article No. 5916. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chiu, C.-Y., Yang, R.-S., Sheu, M.-L., et al. (2016) Advanced Glycation End-Products Induce Skeletal Muscle Atrophy and Dysfunction in Diabetic Mice via a RAGE-Mediated, AMPK-down-Regulated, Akt Pathway. The Journal of Pathology, 238, 470-482. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mori, H., Kuroda, A., Araki, M., et al. (2017) Advanced Glycation End-Products Are a Risk for Muscle Weakness in Japanese Patients with Type 1 Diabetes. Journal of Diabetes Investi-gation, 8, 377-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Mori, H., Kuroda, A., Ishizu, M., et al. (2019) Association of Accumulated Advanced Glycation End-Products with a High Prevalence of Sarcopenia and Dynapenia in Patients with Type 2 Diabe-tes. Journal of Diabetes Investigation, 10, 1332-1340. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Henríquez-Olguín, C., Boronat, S., Cabello-Verrugio, C., Jaimovich, E., Hidalgo, E. and Jensen, T.E. (2019) The Emerging Roles of Nicotina-mide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxidants & Redox Signaling, 31, 1371-1410. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Sanchez-Duarte, S., Marquez-Gamino, S., Montoya-Perez, R., et al. (2021) Nicorandil Decreases Oxidative Stress in Slow- and Fast-Twitch Muscle Fibers of Diabetic Rats by Improving the Glutathione System Functioning. Journal of Diabetes Investigation, 12, 1152-1161. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Izzo, A., Massimino, E., Riccardi, G. and Pepa, G.D. (2021) A Narrative Review on Sarcopenia in Type 2 Diabetes Mellitus: Prevalence and Associated Factors. Nutrients, 13, Article 183. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rahman, F.A. and Krause, M.P. (2020) PAI-1, the Plasminogen System and Skeletal Muscle. International Journal of Molecular Sciences, 21, Article 7066. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Dziegala, M., Josiak, K., Kasztura, M., et al. (2018) Iron Deficiency as Energetic Insult to Skeletal Muscle in Chronic Diseases. Journal of Cachexia, Sarcopenia and Muscle, 9, 802-815. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Coleman, S.K., Rebalka, I.A., D’souza, D.M., et al. (2015) Skeletal Mus-cle as a Therapeutic Target for Delaying Type 1 Diabetic Complications. World Journal of Diabetes, 6, 1323-1336. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yell, P.C., Burns, D.K., Dittmar, E.G., White III, C.L. and Cai, C. (2018) Diffuse Microvascular C5b-9 Deposition Is a Common Feature in Muscle and Nerve Biopsies from Diabetic Pa-tients. Acta Neuropathologica Communications, 6, Article No. 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fujimaki, S., Matsumoto, T., Muramatsu, M., et al. (2022) The Endothelial Dll4-Muscular Notch2 Axis Regulates Skeletal Muscle Mass. Nature Metabolism, 4, 180-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kushnir, A., Wajsberg, B. and Marks, A.R. (2018) Ryanodine Receptor Dysfunction in Human Disorders. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1865, 1687-1697. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Rebbeck, R.T., Essawy, M.M., Nitu, F.R., et al. (2017) High-Throughput Screens to Discover Small-Molecule Modulators of Ryanodine Receptor Calcium Release Channels. SlAS Discovery, 22, 176-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zalk, R. and Marks, A.R. (2017) Ca2+ Release Channels Join the ‘Resolution Revolution’. Trends in Biochemical Sciences, 42, 543-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Oldfield, C.J., Moffatt, T.L., Dolinsky, V.W., et al. (2022) Sirtuin 3 Overexpression Preserves Maximal Sarco(endo)Plasmic Reticulum Calcium ATPase Activity in the Skeletal Muscle of Mice Subjected to High Fat—High Sucrose Feeding. Canadian Journal of Physiology and Pharmacology, 100, 361-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Miller, S.G., Hafen, P.S. and Brault, J.J. (2019) Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy. International Journal of Molecular Sciences, 21, Article 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Mack, D.L. (2017) Reversion to Embryonic Transcriptional Splicing Patterns May Underlie Diabetic Myopathy. Muscle Nerve, 56, 686-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hulmi, J.J., Silvennoinen, M., Lehti, M., et al. (2012) Altered REDD1, Myostatin and Akt/mTOR/FoxO/MAPK Signaling in Streptozotocin-Induced Diabetic Muscle Atrophy. American Journal of Physiology Endocrinology and Metabolism, 302, E307-E315. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yang, B., Sun, J., Yuan, Y. and Sun, Z. (2018) Effects of Atorvastatin on Autophagy in Skeletal Muscles of Diabetic Rats. Journal of Diabetes Investigation, 9, 753-761. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chen, H.J., Wang, C.C., Chan, D.C., et al. (2019) Adverse Effects of Acro-lein, a Ubiquitous Environmental Toxicant, on Muscle Regeneration and Mass. Journal of Cachexia, Sarcopenia and Muscle, 10, 165-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Gamberi, T., Magherini, F., Mannelli, M., et al. (2019) Role of Adiponec-tin in the Metabolism of Skeletal Muscles in Collagen VI-Related Myopathies. Journal of Molecular Medicine (JMM), 97,793-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Fujimaki, S., Wakabayashi, T., Takemasa, T., et al. (2015) Dia-betes and Stem Cell Function. BioMed Research International, 2015, Article ID: 592915. [Google Scholar] [CrossRef] [PubMed]
|