|
[1]
|
中国医师协会血液科医师分会, 中华医学会血液学分会. 中国多发性骨髓瘤诊治指南(2022年修订) [J]. 中华内科杂志, 2022, 61(5): 480-487.
|
|
[2]
|
Rajkumar, S.V. (2022) Multiple Myeloma: 2022 Update on Diagnosis, Risk Strati-fication, and Management. American Journal of Hematology, 97, 1086-1107. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Silberstein, J., Tuchman, S. and Grant, S.J. (2022) What Is Multiple Mye-loma? JAMA, 327, 497. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Boise, L.H., Kaufman, J.L., Bahlis, N.J., et al. (2014) The Tao of Myeloma. Blood, 124, 1873-1879. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Luo, S., Su, T., Zhou, X., et al. (2022) Chromosome 1 Insta-bility in Multiple Myeloma: Aberrant Gene Expression, Pathogenesis, and Potential Therapeutic Target. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 36, e22341. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Neuse, C.J., Lomas, O.C., Schliemann, C., et al. (2020) Genome Insta-bility in Multiple Myeloma. Leukemia, 34, 2887-2897. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hultcrantz, M., Yellapantula, V. and Rustad, E.H. (2020) Ge-nomic Profiling of Multiple Myeloma: New Insights and Modern Technologies. Best Practice & Research Clinical Haematology, 33, Article ID: 101153. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Giri, S., Huntington, S.F., Wang, R., et al. (2020) Chromosome 1 Abnormalities and Survival of Patients with Multiple Myeloma in the Era of Novel Agents. Blood Advances, 4, 2245-2253. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Panani, A.D., Ferti, A.D., Papaxoinis, C., et al. (2004) Cytogenetic Data as a Prognostic Factor in Multiple Myeloma Patients: Involvement of 1p12 Region an Adverse Prog-nostic Factor. Anticancer Research, 24, 4141-4146.
|
|
[10]
|
Boyd, K.D., Ross, F.M., Walker, B.A., et al. (2011) Mapping of Chromosome 1p Deletions in Myeloma Identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as Being Genes in Re-gions Associated with Adverse Survival. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 17, 7776-7784. [Google Scholar] [CrossRef]
|
|
[11]
|
Lohr, J.G., Stojanov, P., Carter, S.L., et al. (2014) Wide-spread Genetic Heterogeneity in Multiple Myeloma: Implications for Targeted Therapy. Cancer Cell, 25, 91-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, S., Chen, H., Yin, Y., et al. (2023) Inhibition of FAM46/TENT5 Activity by BCCIPα Adopting a Unique Fold. Science Advances, 9, eadf5583. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, H., Zhang, S.-H., Hu, J.-L., et al. (2021) Structural and Func-tional Characterization of Multiple Myeloma Associated Cytoplasmic poly(A) Polymerase FAM46C. Cancer Communi-cations (London, England), 41, 615-630. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Manfrini, N., Mancino, M., Miluzio, A., et al. (2020) FAM46C and FNDC3A Are Multiple Myeloma Tumor Suppressors That Act in Concert to Impair Clearing of Protein Aggregates and Autophagy. Cancer Research, 80, 4693-4706. [Google Scholar] [CrossRef]
|
|
[15]
|
Kanasugi, J., Hanamura, I., Ota, A., et al. (2020) Biallelic Loss of FAM46C Triggers Tumor Growth with Concomitant Activation of Akt Signaling in Multiple Myeloma Cells. Cancer Science, 111, 1663-1675. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Comet, I., Riising, E.M., Leblanc, B., et al. (2016) Maintaining Cell Identity: PRC2-Mediated Regulation of Transcription and Cancer. Nature Reviews. Cancer, 16, 803-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Perino, M., van Mierlo, G., Karemaker, I.D., et al. (2018) MTF2 Recruits Polycomb Repressive Complex 2 by Helical-Shape-Selective DNA Binding. Nature Genetics, 50, 1002-1010. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Saul, M.C., Majdak, P., Perez, S., et al. (2017) High Motivation for Exercise Is Associated with Altered Chromatin Regulators of Monoamine Receptor Gene Expression in the Striatum of Selectively Bred Mice. Genes, Brain, and Behavior, 16, 328-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Yang, Z., Sun, Q., Guo, J., et al. (2019) GRSF1-Mediated MIR-G-1 Promotes Malignant Behavior and Nuclear Autophagy by Directly Upregulating TMED5 and LMNB1 in Cervical Cancer Cells. Autophagy, 15, 668-685. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Liu, Y., Yu, H., Yoo, S., et al. (2019) A Network Analysis of Multiple Myeloma Related Gene Signatures. Cancers, 11, 1452. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yan, M., Niu, L., Liu, J., et al. (2021) circEVI5 Acts as a miR-4793-3p Sponge to Suppress the Proliferation of Gastric Cancer. Cell Death & Disease, 12, 774. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Małecki, J.M., Odonohue, M.-F., Kim, Y., et al. (2021) Human METTL18 Is a Histidine-Specific Methyltransferase That Targets RPL3 and Affects Ribosome Biogenesis and Function. Nucleic Acids Research, 49, 3185-3203. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium (2023) Author Correction: Pan-Cancer Analysis of Whole Genomes. Nature, 614, E39.
|
|
[24]
|
Hofman, I.J.F., Patchett, S., van Duin, M., et al. (2017) Low Frequency Mutations in Ribosomal Proteins RPL10 and RPL5 in Multiple Myeloma. Haematologica, 102, e317-e320. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hofman, I.J.F., van Duin, M., Bruyne, E., et al. (2017) RPL5 on 1p22.1 Is Recurrently Deleted in Multiple Myeloma and Its Expression Is Linked to Bortezomib Response. Leukemia, 31, 1706-1714. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, A., Huang, Z., Tao, W., et al. (2022) USP33 Deubiquitinates and Stabilizes HIF-2alpha to Promote Hypoxia Response in Glioma Stem Cells. The EMBO Journal, 41, e109187. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kitamura, H. (2023) Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. International Journal of Molecular Sciences, 24, 3219. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, S., Liang, Y., Shen, Y., et al. (2023) lncRNA XIST/miR-129-2-3p Axis Targets CCP110 to Regulate the Proliferation, Invasion and Migration of Endometrial Cancer Cells. Experimental and Therapeutic Medicine, 25, Article No. 159. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Simicek, M., Lievens, S., Laga, M., et al. (2013) The Deubiquitylase USP33 Discriminates between RALB Functions in Autophagy and Innate Immune Response. Nature Cell Biology, 15, 1220-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chng, W.J., Gertz, M.A., Chung, T.-H., et al. (2010) Correlation between Array-Comparative Genomic Hybridization-Defined Genomic Gains and Losses and Survival: Identification of 1p31-32 Deletion as a Prognostic Factor in Myeloma. Leukemia, 24, 833-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Clark, N., Wu, X. and Her, C. (2013) MutS Homologues hMSH4 and hMSH5: Genetic Variations, Functions, and Implications in Human Diseases. Current Genomics, 14, 81-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, L., Hao, J., Yan, C.-Q., et al. (2020) Inhibition of mi-croRNA-300 Inhibits Cell Adhesion, Migration, and Invasion of Prostate Cancer Cells by Promoting the Expression of DAB1. Cell Cycle (Georgetown, Tex.), 19, 2793-2810. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wang, H., Meng, H., Wang, J., et al. (2020) Clinical Char-acteristics and Prognostic Values of 1p32.3 Deletion Detected through Fluorescence in Situ Hybridization in Patients with Newly Diagnosed Multiple Myeloma: A Single-Center Study in China. Frontiers of Medicine, 14, 327-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hebraud, B., Leleu, X., Lauwers-Cances, V., et al. (2014) Dele-tion of the 1p32 Region Is a Major Independent Prognostic Factor in Young Patients with Myeloma: The IFM Experi-ence on 1195 Patients. Leukemia, 28, 675-679. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Bretz, J., Garcia, J., Huang, X., et al. (2011) Noxa Mediates p18INK4c Cell-Cycle Control of Homeostasis in B Cells and Plasma Cell Precursors. Blood, 117, 2179-2188. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Morse, L., Chen, D., Franklin, D., et al. (1997) Induction of Cell Cycle Arrest and B Cell Terminal Differentiation by CDK Inhibitor p18(INK4c) and IL-6. Immunity, 6, 47-56. [Google Scholar] [CrossRef]
|
|
[37]
|
Kulkarni, M.S., Daggett, J.L., Bender, T.P., et al. (2002) Frequent Inactivation of the Cyclin-Dependent Kinase Inhibitor p18 by Homozygous Deletion in Multiple Myeloma Cell Lines: Ectopic p18 Expression Inhibits Growth and Induces Apoptosis. Leukemia, 16, 127-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Adamia, S., Bhatt, S., Wen, K., et al. (2022) Combination Therapy Targeting Erk1/2 and CDK4/6i in Relapsed Refractory Multiple Myeloma. Leukemia, 36, 1088-1101. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Franz, A., Pirson, P.A., Pilger, D., et al. (2016) Chroma-tin-Associated Degradation Is Defined by UBXN-3/FAF1 to Safeguard DNA Replication Fork Progression. Nature Communications, 7, Article No. 10612. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, Y., Wu, X., Li, J., et al. (2022) Circ_0004354 Might Compete with Circ_0040039 to Induce NPCs Death and Inflammatory Response by Targeting miR-345-3p-FAF1/TP73 Axis in Inter-vertebral Disc Degeneration. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2776440. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Song, S., Park, J.K., Shin, S.C., et al. (2022) The Complex of Fas-Associated Factor 1 with Hsp70 Stabilizes the Adherens Junction Integrity by Suppressing RhoA Activation. Jour-nal of Molecular Cell Biology, 14, mjac037. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Xie, F., Jin, K., Shao, L., et al. (2017) FAF1 Phosphorylation by AKT Accumulates TGF-β Type II Receptor and Drives Breast Cancer Metastasis. Nature Communications, 8, Article No. 15021. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Omran, Z., Dalhat, M., Abdullah, O., et al. (2021) Targeting Post-Translational Modifications of the p73 Protein: A Promising Therapeutic Strategy for Tumors. Cancers, 13, 1916. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Schultheis, B., Krämer, A., Willer, A., et al. (1999) Analysis of p73 and p53 Gene Deletions in Multiple Myeloma. Leukemia, 13, 2099-2103. https://pubmed.ncbi.nlm.nih.gov/10602435 [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Saha, M.N., Jiang, H., Yang, Y., Reece, D. and Chang, H. (2018) Correction: PRIMA-1Met/APR-246 Displays High Antitumor Activity in Multiple Myeloma by Induction of p73 and Noxa. Molecular Cancer Therapeutics, 17, 1143.
https://pubmed.ncbi.nlm.nih.gov/29717080 [Google Scholar] [CrossRef]
|