|
[1]
|
Mendez-Ferrer, S., Bonnet, D., Steensma, D.P., et al. (2020) Bone Marrow Niches in Haematological Malignancies. Nature Reviews Cancer, 20, 285-298. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Zhong, J., Wu, H., Bu, X., et al. (2021) Establishment of Prognosis Model in Acute Myeloid Leukemia Based on Hypoxia Microenvironment, and Exploration of Hypoxia-Related Mechanisms. Frontiers in Genetics, 12, Article 727392. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Godet, I., Shin, Y.J., Ju, J.A., et al. (2019) Fate-Mapping Post-Hypoxic Tumor Cells Reveals a ROS-Resistant Phenotype That Promotes Metastasis. Nature Communications, 10, Article No. 4862. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Sendker, S., Waack, K. and Reinhardt, D. (2021) Far from Health: The Bone Marrow Microenvironment in AML, A Leukemia Supportive Shelter. Children (Basel), 8, Article 371. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kuek, V., Hughes, A.M., Kotecha, R.S. and Cheung, L.C. (2021) Therapeutic Targeting of the Leukaemia Microenvironment. International Journal of Molecular Sciences, 22, Article 6888. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bruno, S., Mancini, M., De Santis, S., et al. (2021) The Role of Hypoxic Bone Marrow Microenvironment in Acute Myeloid Leukemia and Future Therapeutic Opportunities. Interna-tional Journal of Molecular Sciences, 22, Article 6857. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kaweme, N.M. and Zhou, F. (2021) Optimizing NK Cell-Based Immunotherapy in Myeloid Leukemia: Abrogating an Immunosuppres-sive Microenvironment. Frontiers in Immunology, 12, Article 683381. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Pinho, S. and Frenette, P.S. (2019) Haematopoietic Stem Cell Ac-tivity and Interactions with the Niche. Nature Reviews Molecular Cell Biology, 20, 303-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gomes, A.C., Saraiva, M. and Gomes, M.S. (2021) The Bone Marrow Hematopoietic Niche and Its Adaptation to Infection. Seminars in Cell & Developmental Biology, 112, 37-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bapat, A., Schippel, N., Shi, X., et al. (2021) Hypoxia Pro-motes Erythroid Differentiation through the Development of Progenitors and Proerythroblasts. Experimental Hematology, 97, 32-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shalapour, S. and Karin, M. (2019) Pas de Deux: Control of Anti-Tumor Immunity by Cancer-Associated Inflammation. Immunity, 51, 15-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Li, L., Zhao, L., Man, J. and Liu, B. (2021) CXCL2 Benefits Acute Myeloid Leukemia Cells in Hypoxia. International Journal of Laboratory Hematology, 43, 1085-1092. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ciciarello, M., Corradi, G., Forte, D., Cavo, M. and Curti, A. (2021) Emerging Bone Marrow Microenvironment-Driven Mechanisms of Drug Resistance in Acute Myeloid Leukemia: Tangle or Chance? Cancers, 13, Article 5319. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tommasini-Ghelfi, S., Murnan, K., Kouri, F.M., et al. (2019) Cancer-Associated Mutation and Beyond: The Emerging Biology of Isocitrate Dehydrogenases in Human Disease. Science Advances, 5, eaaw4543. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Fernandes, M.T., Calado, S.M., Mendes-Silva, L. and Bragança, J. (2020) CITED2 and the Modulation of the Hypoxic Response in Cancer. World Journal of Clinical Oncology, 11, 260-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rashid, M., Zadeh, L.R., Baradaran, B., et al. (2021) Up-Down Regulation of HIF-1α in Cancer Progression. Gene, 798, Article ID: 145796. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhu, G., Wang, L., Meng, W., et al. (2021) LOXL2-Enriched Small Extracellular Vesicles Mediate Hypoxia-Induced Premetastatic Niche and Indicates Poor Outcome of Head and Neck Cancer. Theranostics, 11, 9198-9216. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, X., Yang, Y., Zhang, B., et al. (2022) Lactate Metabolism in Human Health and Disease. Signal Transduction and Targeted Therapy, 7, Article No. 305. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Martinez-Outschoorn, U.E., Peiris-Pages, M., Pestell, R.G., Sot-gia, F. and Lisanti, M.P. (2017) Cancer Metabolism: A Therapeutic Perspective. Nature Reviews Clinical Oncology, 14, 11-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
马苑, 付秀华, 王立红. 肿瘤缺氧微环境的研究进展[J]. 癌症进展, 2020, 18(2): 109-112, 147.
|
|
[21]
|
周程继, 贾家猛, 王贤芝, 等. 缺氧微环境与胃肠道肿瘤转移的关系研究进展[J]. 西部医学, 2017, 29(9): 1328-1331.
|
|
[22]
|
侯艳, 李文倩, 冯建明, 等. 低氧诱导因子-1α参与慢性粒细胞白血病发病机制的研究进展[J]. 国际免疫学杂志, 2018, 41(5): 578-581.
|
|
[23]
|
Karagiota, A., Kourti, M., Simos, G. and Mylonis, I. (2019) HIF-1α-Derived Cell-Penetrating Peptides Inhibit ERK-Dependent Activation of HIF-1 and Trig-ger Apoptosis of Cancer Cells under Hypoxia. Cellular and Molecular Life Sciences, 76, 809-825. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
刘文静, 李大启. 缺氧骨髓微环境在急性髓细胞白血病中的研究现状[J]. 国际输血及血液学杂志, 2022, 45(4): 284-289.
|
|
[25]
|
Takubo, K., Goda, N., Yamada, W., et al. (2010) Regulation of the HIF-1α Level Is Essential for Hematopoietic Stem Cells. Cell Stem Cell, 7, 391-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, Y., Liu, Y., Malek, S.N., Zheng, P. and Liu, Y. (2011) Targeting HIF1α Eliminates Cancer Stem Cells in Hematological Malignancies. Cell Stem Cell, 8, 399-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Wang, Y., Liu, Y., Bailey, C., et al. (2020) Therapeutic Targeting of TP53-Mutated Acute Myeloid Leukemia by Inhibiting HIF-1α with Echinomycin. Oncogene, 39, 3015-3027. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hoseinkhani, Z., Rastegari-Pouyani, M., Oubari, F., et al. (2019) Contribution and Prognostic Value of TSGA10 Gene Expression in Patients with Acute Myeloid Leukemia (AML). Pa-thology—Research and Practice, 215, 506-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Sharma, M., Ross, C. and Srivastava, S. (2019) Ally to Adversary: Mesenchymal Stem Cells and Their Transformation in Leukaemia. Cancer Cell International, 19, Article No. 139. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kong, F., He, H., Bai, H., et al. (2022) A Biomimetic Nanocom-posite with Enzyme-Like Activities and CXCR4 Antagonism Efficiently Enhances the Therapeutic Efficacy of Acute Myeloid Leukemia. Bioactive Materials, 18, 526-538. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Tang, W., Li, Z., Li, X. and Huo, Z.H. (2020) High CXCR2 Expression Predicts Poor Prognosis in Adult Patients with Acute Myeloid Leukemia. Therapeutic Advances in Hema-tology, 11, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Min, Q., Feng, S.L., Lu, H., et al. (2019) Modulation of Drug-Metabolizing Enzymes and Transporters under Hypoxia Environment. Acta Physiologica Sinica, 71, 336-342.
|
|
[33]
|
Alonso, S., Su, M., Jones, J.W., et al. (2015) Human Bone Marrow Niche Chemoprotection Mediated by Cytochrome P450 Enzymes. Oncotarget, 6, 14905-14912. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Li, X., Su, Y., Madlambayan, G., et al. (2019) Antileukemic Activity and Mechanism of Action of the Novel PI3K and Histone Deacetylase Dual Inhibitor CUDC-907 in Acute Myeloid Leukemia. Haematologica, 104, 2225-2240. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Watanabe, D., Nogami, A., Okada, K., et al. (2019) FLT3-ITD Activates RSK1 to Enhance Proliferation and Survival of AML Cells by Activating mTORC1 and eIF4B Cooperatively with PIM or PI3K and by Inhibiting Bad and BIM. Cancers, 11, Article 1827. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hira, V., Van Noorden, C., Carraway, H.E., Maciejewski, J.P. and Molenaar, R.J. (2017) Novel Therapeutic Strategies to Target Leukemic Cells That Hijack Compartmentalized Continuous Hematopoietic Stem Cell Niches. Biochimica et Biophysica Acta—Reviews on Cancer, 1868, 183-198. [Google Scholar] [CrossRef] [PubMed]
|