|
[1]
|
Roden, M. and Shulman, G.I. (2019) The Integrative Biology of Type 2 Diabetes. Nature, 576, 51-60. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sun, X., Hao, H., Han, Q., Song, X., Liu, J., Dong, L., Han, W. and Mu, Y. (2017) Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorate Insulin Resistance by Sup-pressing NLRP3 Inflammasome-Mediated Inflammation in Type 2 Diabetes Rats. Stem Cell Research & Therapy, 8, Ar-ticle No. 241. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
胡淑娟, 龙佩林, 陈平, 等. NLRP3炎症小体参与运动改善胰岛素抵抗的机制研究进展[J]. 中国免疫学杂志, 2022, 38(22): 2797-2803.
|
|
[4]
|
Hotamisligil, G.S. (2006) Inflamma-tion and Metabolic Disorders. Nature, 444, 860-867. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lecube, A., Pachón, G., Petriz, J., Hernández, C. and Simó, R. (2011) Phagocytic Activity Is Impaired in Type 2 Diabetes Mellitus and Increases after Metabolic Improvement. PLOS ONE, 6, e23366. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Stutz, A., Golenbock, D.T. and Latz, E. (2009) Inflammasomes: Too Big to Miss. Journal of Clinical Investigation, 119, 3502-3511. [Google Scholar] [CrossRef]
|
|
[7]
|
Shaw, P.J., McDermott, M.F. and Kanneganti, T.D. (2011) Inflammasomes and Autoimmunity. Trends in Molecular Medicine, 17, 57-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lee, H.M., Kim, J.J., Kim, H.J., Shong, M., Ku, B.J. and Jo, E.K. (2013) Upregulated NLRP3 Inflammasome Activation in Patients with Type 2 Diabetes. Diabetes, 62, 194-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zeadin, M.G., Petlura, C.I. and Werstuck, G.H. (2013) Molecular Mechanisms Linking Diabetes to the Accelerated Development of Atherosclerosis. Canadian Journal of Diabetes, 37, 345-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Menegazzo, L., Ciciliot, S., Poncina, N., Mazzucato, M., Persano, M., Bonora, B., Albiero, M., Vigili de Kreutzenberg, S., Avogaro, A. and Fadini, G.P. (2015) NETosis Is Induced by High Glucose and Associated with Type 2 Diabetes. Acta Diabetologica, 52, 497-503. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Joshi, M.B., Lad, A., Bharath Prasad, A.S., Balakrishnan, A., Ramachandra, L. and Satyamoorthy, K. (2013) High Glucose Modulates IL-6 Mediated Immune Homeostasis through Impeding Neutrophil Extracellular Trap Formation. FEBS Letters, 587, 2241-2246. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Esser, N., L’homme, L., De Roover, A., Kohnen, L., Scheen, A.J., Moutschen, M., Piette, J., Legrand-Poels, S. and Paquot, N. (2013) Obesity Phenotype Is Related to NLRP3 In-flammasome Activity and Immunological Profile of Visceral Adipose Tissue. Diabetologia, 56, 2487-2497. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sharma, D. and Kanneganti, T.D. (2016) The Cell Biology of In-flammasomes: Mechanisms of Inflammasome Activation and Regulation. Journal of Cell Biology, 213, 617-629. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ding, S., Xu, S., Ma, Y., Liu, G., Jang, H. and Fang, J. (2019) Modu-latory Mechanisms of the NLRP3 Inflammasomes in Diabetes. Biomolecules, 9, Article No. 850. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Malik, A. and Kanneganti, T.D. (2017) Inflammasome Activation and Assembly at a Glance. Journal of Cell Science, 130, 3955-3963. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hoseini, Z., Sepahvand, F., Rashidi, B., Sahebkar, A., Masoudifar, A. and Mirzaei, H. (2018) NLRP3 Inflammasome: Its Regula-tion and Involvement in Atherosclerosis. Journal of Cellular Physiology, 233, 2116-2132. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Han, J.H., Shin, H., Rho, J.G., Kim, J.E., Son, D.H., Yoon, J., Lee, Y.J., Park, J.H., Song, B.J., Choi, C.S., et al. (2018) Peripheral Cannabinoid 1 Receptor Blockade Mitigates Adipose Tissue Inflammation via NLRP3 Inflammasome in Mouse Models of Obesity. Diabetes, Obesity and Metabolism, 20, 2179-2189. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wu, D., Yan, Z.B., Cheng, Y.G., Zhong, M.W., Liu, S.Z., Zhang, G.Y. and Hu, S.Y. (2018) Deactivation of the NLRP3 Inflammasome in Infiltrating Macrophages by Duode-nal-Jejunal Bypass Surgery Mediates Improvement of Beta Cell Function in Type 2 Diabetes. Metabolism: Clinical and Experimental, 81, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hu, C., Ding, H., Li, Y., Pearson, J.A., Zhang, X., Flavell, R.A., Wong, F.S. and Wen, L. (2015) NLRP3 Deficiency Protects from Type 1 Diabetes through the Regulation of Chemotaxis into the Pancreatic Islets. Proceedings of the National Academy of Sciences of the United States of America, 112, 11318-11323. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Mathews, R.J., Robinson, J.I., Battellino, M., Wong, C., Taylor, J.C., Eyre, S., Churchman, S.M., Wilson, A.G., Isaacs, J.D., Hyrich, K., et al. (2014) Evidence of NLRP3-Inflammasome Activation in Rheumatoid Arthritis (RA): Genetic Variants within the NLRP3-Inflammasome Complex in Relation to Susceptibility to RA and Response to Anti-TNF Treatment. Annals of Rheumatic Diseases, 73, 1202-1210. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Walle, L.V., Van Opdenbosch, N., Jacques, P., Fossoul, A., Verheugen, E., Vogel, P., Beyaert, R., Elewaut, D., Kanneganti, T.D., van Loo, G., et al. (2014) Negative Regulation of the NLRP3 Inflammasome by A20 Protects against Arthritis. Nature, 512, 69-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, B.R., Shi, J.Q., Ge, N.N., Ou, Z., Tian, Y.Y., Jiang, T., Zhou, J.S., Xu, J. and Zhang, Y.D. (2018) PM2.5 Exposure Aggravates Oligomeric Amyloid Beta-Induced Neuronal Injury and Promotes NLRP3 Inflammasome Activation in an in Vitro Model of Alzheimer’s Disease. Journal of Neuroinflammation, 15, Article No. 132. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Chatterjee, S., Khunti, K. and Davies, M.J. (2017) Type 2 Diabe-tes. The Lancet, 389, 2239-2251. [Google Scholar] [CrossRef]
|
|
[24]
|
Swanson, K.V., Deng, M. and Ting, J.P. (2019) The NLRP3 Inflammasome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kelley, N., Jeltema, D., Duan, Y. and He, Y. (2019) The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, Article No. 3328. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bauernfeind, F.G., Horvath, G., Stutz, A., Alnemri, E.S., MacDonald, K., Speert, D., et al. (2009) Cutting Edge: NF-kappaB Activating Pattern Recognition and Cytokine Receptors License NLRP3 Inflammasome Activation by Regulating NLRP3 Expression. The Journal of Immunology, 183, 787-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Franchi, L., Eigenbrod, T. and Nunez, G. (2009) Cutting Edge: TNF-Alpha Mediates Sensitization to ATP and Silica via the NLRP3 Inflammasome in the Absence of Microbial Stimu-lation. The Journal of Immunology, 183, 792-796. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lin, K.M., Hu, W., Troutman, T.D., Jennings, M., Brewer, T., Li, X., et al. (2014) IRAK-1 Bypasses Priming and Directly Links TLRs to Rapid NLRP3 Inflammasome Activation. Pro-ceedings of the National Academy of Sciences of the United States of America, 111, 775-780. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Xing, Y., Yao, X., Li, H., Xue, G., Guo, Q., Yang, G., et al. (2017) Cutting Edge: TRAF6 Mediates TLR/IL-1R Signaling-Induced Nontranscriptional Priming of the NLRP3 Inflammasome. The Journal of Immunology, 199, 1561-1566. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Py, B.F., Kim, M.S., Vakifahmetoglu-Norberg, H. and Yuan, J. (2013) Deubiquitination of NLRP3 by BRCC3 Critically Regulates Inflammasome Activity. Molecular Cell, 49, 331-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Song, N., Liu, Z.S., Xue, W., Bai, Z.F., Wang, Q.Y., Dai, J., et al. (2017) NLRP3 Phosphrylation Is an Essential Priming Event for Inflammasome Activation. Molecular Cell, 68, 185-197.e6. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Muñoz-Planillo, R., Kuffa, P., Martínez-Colón, G., Smith, B.L., Rajendiran, T.M. and Núñez, G. (2013) K(+) Efflux Is the Common Trigger of NLRP3 Inflammasome Ac-tivation by Bacterial Toxins and Particulate Matter. Immunity, 38, 1142-1153. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Murakami, T., Ockinger, J., Yu, J., Byles, V., McColl, A., Ho-fer, A.M., et al. (2012) Critical Role for Calcium Mobilization in Activation of the NLRP3 Inflammasome. Proceedings of the National Academy of Sciences of the United States of America, 109, 11282-11287. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Tang, T., Lang, X., Xu, C., Wang, X., Gong, T., Yang, Y., et al. (2017) CLICs-Dependent Chloride Efflux Is an Essential and Proximal Upstream Event for NLRP3 Inflammasome Ac-tivation. Nature Communications, 8, Article No. 202. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Domingo-Fernandez, R., Coll, R.C., Kearney, J., Breit, S. and O’Neill, L.A.J. (2017) The Intracellular Chloride Channel Proteins CLIC1 and CLIC4 Induce IL-1beta Transcription and Activate the NLRP3 Inflammasome. Journal of Biological Chemistry, 292, 12077-12087. [Google Scholar] [CrossRef]
|
|
[36]
|
Schorn, C., Frey, B., Lauber, K., Janko, C., Strysio, M., Keppeler, H., et al. (2011) Sodium Overload and Water Influx Activate the NALP3 Inflammasome. Journal of Biological Chemis-try, 286, 35-41. [Google Scholar] [CrossRef]
|
|
[37]
|
Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2011) A Role for Mitochondria in NLRP3 Inflammasome Activation. Nature, 469, 221-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Halle, A., Hornung, V., Petzold, G.C., Stewart, C.R., Monks, B.G., Reinheckel, T., et al. (2008) The NALP3 Inflammasome Is Involved in the Innate Immune Response to Amyloid-Beta. Nature Immunology, 9, 857-865. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chen, J. and Chen, Z.J. (2018) PtdIns4P on Dispersed Trans-Golgi Network Mediates NLRP3 Inflammasome Activation. Nature, 564, 71-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Huang, Y., Xu, W. and Zhou, R. (2021) NLRP3 Inflammasome Activation and Cell Death. Cellular & Molecular Immunology, 18, 2114-2127. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Rathinam, V.A.K., Zhao, Y. and Shao, F. (2019) Innate Immun-ity to Intracellular LPS. Nature Immunology, 20, 527-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Sharma, B.R. and Kanneganti, T.D. (2021) NLRP3 Inflammasome in Cancer and Metabolic Diseases. Nature Immunology, 22, 550-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Balakrishnan, A., Karki, R., Berwin, B., Yamamoto, M. and Kanneganti, T.-D. (2018) Guanylate Binding Proteins Facilitate Caspase-11-Dependent Pyroptosis in Response to Type 3 Secretion System-Negative Pseudomonas aeruginosa. Cell Death Discovery, 4, Article No. 66. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zanoni, I., Tan, Y., Di Gioia, M., Broggi, A., Ruan, J., Shi, J., et al. (2016) An Endogenous Caspase-11 Ligand Elicits Interleukin-1 Release from Living Dendritic Cells. Science, 352, 1232-1236. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chu, L.H., Indramohan, M., Ratsimandresy, R.A., Gan-gopadhyay, A., Morris, E.P., Monack, D.M., et al. (2018) The Oxidized Phospholipid oxPAPC Protects from Septic Shock by Targeting the Non-Canonical Inflammasome in Macrophages. Nature Communications, 9, Article No. 996. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Gaidt, M.M., Ebert, T.S., Chauhan, D., Schmidt, T., Schmid-Burgk, J.L., Rapino, F., et al. (2016) Human Monocytes Engage an Alternative Inflammasome Pathway. Im-munity, 44, 833-846. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Netea, M.G., Nold-Petry, C.A., Nold, M.F., Joosten, L.A., Opitz, B., van der Meer, J.H., et al. (2009) Differential Requirement for the Activation of the In-flammasome for Processing and Release of IL-1β in Monocytes and Macrophages. Blood, 113, 2324-2335. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zewinger, S., Reiser, J., Jankowski, V., Alansary, D., Hahm, E., Triem, S., et al. (2020) Apolipoprotein C3 Induces Inflammation and Organ Damage by Alternative Inflammasome Activation. Nature Immunology, 21, 30-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Gong, T. and Zhou, R. (2020) ApoC3: An “Alarmin” Triggering Sterile Inflammation. Nature Immunology, 21, 9-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
American Diabetes Association (2013) Diagnosis and Classifica-tion of Diabetes Mellitus. Diabetes Care, 36, S67-S74. [Google Scholar] [CrossRef]
|
|
[51]
|
Jorquera, G., Russell, J., Monsalves-Álvarez, M., Cruz, G., Valladares-Ide, D., Basualto-Alarcón, C., Barrientos, G., Estrada, M. and Llanos, P. (2021) NLRP3 Inflammasome: Potential Role in Obesity Related Low-Grade Inflammation and Insulin Resistance in Skeletal Muscle. International Journal of Molecular Sciences, 22, Article No. 3254. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Petersen, M.C. and Shulman, G.I. (2018) Mechanisms of Insulin Ac-tion and Insulin Resistance. Physiological Reviews, 98, 2133-2223. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Wu, H. and Ballantyne, C.M. (2017) Skeletal Muscle Inflamma-tion and Insulin Resistance in Obesity. Journal of Clinical Investigation, 127, 43-54. [Google Scholar] [CrossRef]
|
|
[54]
|
Wu, K.K., Cheung, S.W. and Cheng, K.K. (2020) NLRP3 Inflammasome Activation in Adipose Tissues and Its Implications on Metabolic Diseases. International Journal of Molecular Sciences, 21, Article No. 4148. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Lackey, D.E. and Olefsky, J.M. (2016) Regulation of Metabolism by the Innate Immune System. Nature Reviews Endocrinology, 12, 15-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Kewalramani, G., Fink, L.N., Asadi, F. and Klip, A. (2011) Palmi-tate-Activated Macrophages Confer Insulin Resistance to Muscle Cells by A Mechanism Involving Protein Kinase C θ and ε. PLOS ONE, 6, e26947. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Sabio, G. and Davis, R.J. (2010) cJun NH2-Terminal Kinase 1 (JNK1): Roles in Metabolic Regulation of Insulin Resistance. Trends in Biochemical Sciences, 35, 490-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Rovira-Llopis, S., Apostolova, N., Bañuls, C., Muntané, J., Rocha, M. and Victor, V.M. (2018) Mitochondria, the NLRP3 Inflammasome, and Sirtuins in Type 2 Diabetes: New Therapeu-tic Targets. Antioxidants & Redox Signaling, 29, 749-791. [Google Scholar] [CrossRef] [PubMed]
|