|
[1]
|
Anissipour, A.K., et al. (2014) Behavior of Scoliosis during Growth in Children with Osteogenesis Imperfecta. The Journal of Bone & Joint Surgery, 96, 237-243. [Google Scholar] [CrossRef]
|
|
[2]
|
Karbowski, A., Schwit-alle, M. and Eckardt, A. (1999) [Scoliosis in Patients with Osteogenesis Imperfecta: A Federal Nation-Wide Cross-Sectional Study]. Zeitschrift für Orthopädie und Unfallchirurgie, 137, 219-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Martin, E. and Shapiro, J.R. (2007) Osteogenesis Imperfecta: Epide-miology and Pathophysiology. Current Osteoporosis Reports, 5, 91-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Beighton, P. and Versfeld, G.A. (1985) On the Paradoxically High Relative Prevalence of Osteogenesis Imperfecta Type III in the Black Population of South Africa. Clinical Genetics, 27, 398-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Viljoen, D. and Beighton, P. (1987) Osteogenesis Imper-fecta Type III: An Ancient Mutation in Africa? American Journal of Medical Genetics, 227, 907-912. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Takagi, M., Sato, S., Hara, K., Tani, C., Miyazaki, O., Nishimura, G. and Hasegawa, T. (2013) A Recurrent Mutation in the 5’-UTR of IFITM5 Causes Osteogenesis Imperfecta Type V. American Journal of Medical Genetics Part A, 161, 1980-198255. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hoyer-Kuhn, H., Netzer, C. and Semler, O. (2015) Osteogenesis Imper-fecta: Pathophysiology and Treatment. Wiener Medizinische Wochenschrift, 165, 278-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hollister, D.W. (1987) Molecular Basis of Osteogenesis Imper-fecta. In: Current Problems in Dermatology, Vol. 17, Karger International, Basel, 76-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bianchi, L., Gagliardi, A., Maruelli, S., et al. (2015) Altered Cytoskeletal Organization Characterized Lethal but Not Surviving Brtl+/- Mice: Insight on Phenotypic Variability in Osteogenesis Im-perfecta. Human Molecular Genetics, 24, 6118-6133. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zaripova, A.R. and Khusainova, R.I. (2020) Modern Classification and Molecular-Genetic Aspects of Osteogenesis Imperfecta. Vavi-lovskii Zhurnal Genetiki i Selektsii, 24, 219-227. [Google Scholar] [CrossRef]
|
|
[11]
|
Jovanovic, M., Guter-man-Ram, G. and Marini, J.C. (2022) Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Clas-sical and Rare OI Types. Endocrine Reviews, 43, 61-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Byers, P.H. (2002) Killing the Messenger: New Insights Intononsense-Mediated mRNA Decay. Journal of Clinical Investigation, 109, 3-6. [Google Scholar] [CrossRef]
|
|
[13]
|
Glorieux, F.H. (2008) Osteogenesis Imperfecta. Best Practice & Research Clinical Rheumatology, 22, 85-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Cheung, M.S., Arponen, H., Roughley, P., Azouz, M.E., Glorieux, F.H., Waltimo-Siren, J. and Rauch, F. (2011) Cranial Base Abnormalities Inosteogenesis Imperfecta: Phenotypic and Genotypic Determinants. Journal of Bone and Mineral Research, 26, 405-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Rossi, V., Lee, B. and Marom, R. (2019) Osteogenesis Imperfecta: Ad-vancements in Genetics and Treatment. Current Opinion in Pediatrics, 31, 708-715. [Google Scholar] [CrossRef]
|
|
[16]
|
Hanagata, N. (2016) IFITM5 Mutations and Osteogenesis Imperfecta. Journal of Bone and Mineral Metabolism, 34, 123-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cho, T.J., Lee, K.E., Lee, S.K., Song, S.J., Kim, K.J., Jeon, D., Lee, G., Kim, H.N., Lee, H.R., Eom, H.H., Lee, Z.H., Kim, O.H., Park, W.Y., Park, S.S., Ikegawa, S., Yoo, W.J., Choi, I.H. and Kim, J.W. (2012) A Single Recurrent Mutation in the 5’-UTR of IFITM5 Causes Osteogenesis Imperfecta Type V. The American Journal of Human Genetics, 91, 343-334. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Semler, O., Garbes, L., Keupp, K., Swan, D., Zimmermann, K., Becker, J., Iden, S., Wirth, B., Eysel, P., Koerber, F., Schoenau, E., Bohlander, S.K., Wollnik, B. and Netzer, C. (2012) A Mutation in the 5’-UTR of IFITM5 Creates an In-Frame Start Codon and Causes Autosomal-Dominant Osteogenesis Imperfecta Type V with Hyperplastic Callus. The American Journal of Human Genetics, 91, 349-335. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Campeau, P.M. and Lee, B.H. (2013) Phenotyic Variability of Osteogenesis Imperfect Type V Caused by an IFITM5 Mutation. Journal of Bone and Mineral Research, 28, 1523-1530. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Balasubramanian, M., Parker, M.J., Dalton, A., Giunta, C., Lindert, U., Peres, L.C., Wagner, B.E., Arundel, P., Offiah, A. and Bishop, N.J. (2013) Geno-type-Phenotype Study in Type V Osteogenesis Imperfecta. Clinical Dysmorphology, 22, 93-101. [Google Scholar] [CrossRef]
|
|
[21]
|
Zhang, Z., Li, M., He, J.W., Fu, W.Z., Zhang, C.Q. and Zhang, Z.L. (2013) Phenotype and Genotype Analysis of Chinese Patients with Osteogenesis Imperfect Type V. PLOS ONE, 8, e7233756. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Grover, M., Campeau, P.M., Lietman, C.D., Lu, J.T., Gibbs, R.A., Schles-inger, A.E. and Lee, B.H. (2013) Osteogenesis Imperfecta Type without Features of Type V Caused by a Mutation in the IFITM5 Gene. Journal of Bone and Mineral Research, 28, 2333-2337. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Kim, O.H., Jin, D.K., Kosaki, K., Kim, J.W., Cho, S.Y., Yoo, W.J., Choi, I.H., Nishimura, G., Ikegawa, S. and Cho, T.J. (2013) Osteogenesis Imperfect Type V: Clinical and Radiographic Mani-festations in Mutation Confirmed Patients. American Journal of Medical Genetics Part A, 161, 1972-197958. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Etich, J., Leßmeier, L., Rehberg, M., Sill, H., Zaucke, F., Netzer, C. and Semler, O. (2020) Osteogenesis Imperfecta-Pathophysiology and Therapeutic Options. Molecular and Cellular Pediat-rics, 7, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Forlino, A. and Marini, J.C. (2016) Osteogenesis Imperfecta. The Lancet, 387, 1657-1671. [Google Scholar] [CrossRef]
|
|
[26]
|
Kang, H., Aryal, A.C.S. and Marini, J.C. (2017) Osteogen-esis Imperfecta: New Genesreveal Novel Mechanisms in Bone Dysplasia. Translational Research, 181, 27-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Morello, R., Bertin, T.K., Chen, Y., et al. (2006) CRTAP Is Re-quired for Prolyl 3-Hydroxylation and Mutations Cause Recessive Osteogenesis Imperfecta. Cell, 127, 291-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Barnes, A.M., Chang, W., Morello, R., et al. (2006) Deficiency of Cartilage-Associated Protein in Recessive Lethal Osteogenesis Imperfecta. The New England Journal of Medicine, 355, 2757-2764. [Google Scholar] [CrossRef]
|
|
[29]
|
Cabral, W.A., Chang, W., Barnes, A.M., et al. (2007) Prolyl 3-Hydroxylase 1 Deficiency Causes a Recessive Metabolic Bone Disorder Resembling Lethal/Severe Osteogenesis Im-perfecta. Nature Genetics, 39, 359-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cabral, W.A., Perdivara, I., Weis, M., Terajima, M., Blissett, A.R., Chang, W., et al. (2014) Abnormal Type I Collagen Post-Translational Modification and Crosslinking ina Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta. PLOS Genetics, 10, e1004465. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Seyedhassani, S.M., Hashemi-Gorji, F., Yavari, M., Harazi, F. and Yassaee, V.R. (2016) Novel FKBP10 Mutation in a Patient with Osteogenesis Imperfecta Type XI. Fetal and Pedi-atric Pathology, 35, 353-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lietman, C.D., Rajagopal, A., Homan, E.P., Munivez, E., Jiang, M.M., Bertin, T.K., Chen, Y., Hicks, J., Weis, M., Eyre, D., Lee, B. and Krakow, D. (2014) Connective Tissue Alterations in Fkbp10-/- Mice. Human Molecular Genetics, 23, 4822-4831. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Patterson, C.E., Abrams, W.R., Wolter, N.E., Rosenbloom, J. and Davis, E.C. (2005) Developmental Regulation and Coordinate Reexpression of FKBP65 with Extracellular Matrix Proteins after Lung Injury Suggesta Specialized Function for this Endoplasmic Reticulum Immunophilin. Cell Stress and Chaperones, 10, 285-295.
|
|
[34]
|
Steinlein, O.K., Aichinger, E., Trucks, H. and Sander, T. (2011) Mutations in FKBP10 Can Cause a Severe form Ofisolated Osteogenesis Imperfecta. BMC Medical Genetics, 12, Article No. 152. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Moravej, H., Karamifar, H., Karamizadeh, Z., Amirhakimi, G., Atashi, S. and Nasirabadi, S. (2015) Bruck Syndrome—A Rare Syndrome of Bone Fragility and Joint Contracture and Novel Homozygous FKBP10 Mutation. Endokrynologia Polska, 66, 170-174. [Google Scholar] [CrossRef]
|
|
[36]
|
Barnes, A.M., Duncan, G., Weis, M., Paton, W., Cabral, W.A., Mertz, E.L., Makareeva, E., Gambello, M.J., Lacbawan, F.L., Leikin, S., Fertala, A., Eyre, D.R., Bale, S.J. and Marini, J.C. (2013) Kuskokwim Syndrome, a Recessive Congenital Contracture Disorder, Extends the Phenotype of FKBP10 Muta-tions. Human Mutation, 34, 1279-1288. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Capitani, M. and Sallese, M. (2009) The KDEL Receptor: New Functions for an Old Protein. FEBS Letters, 583, 3863-3871. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Efthymiou, S., Herman, I., Rahman, F., Anwar, N., Maroofian, R., Yip, J., Mitani, T., Calame, D.G., Hunter, J.V., Sutton, V.R., Yilmaz Gulec, E., Duan, R., Fatih, J.M., Marafi, D., Pehlivan, D., Jhangiani, S.N., Gibbs, R.A., Posey, J.E., SYNAPS Study Group, Maqbool, S., Lupski, J.R. and Houlden, H. (2021) Two Novel Bi-Allelic KDELR2 Missense Variants Causeos-teogenesis Imperfecta with Neurodevelopmental Features. American Journal of Medical Genetics Part A, 185, 2241-2249. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
van Dijk, F.S., Semler, O., Etich, J., Köhler, A., Jimenez-Estrada, J.A., Bravenboer, N., Claeys, L., Riesebos, E., Gegic, S., Piersma, S.R., Jimenez, C.R., Waisfisz, Q., Flores, C.L., Nevado, J., Harsevoort, A.J., Janus, G.J.M., Franken, A.A.M., van der Sar, A.M., Meijers-Heijboer, H., Heath, K.E., Lapunzina, P., Nikkels, P.G.J., Santen, G.W.E., Nüchel, J., Plomann, M., Wagener, R., Rehberg, M., Hoyer-Kuhn, H., Eekhoff, E.M.W., Pals, G., Mörgelin, M., Newstead, S., Wilson, B.T., Ruiz-Perez, V.L., Maugeri, A., Netzer, C., Zaucke, F. and Micha, D. (2020) Interaction between KDELR2 and HSP47 as a Key Determinant in Osteogenesis Imperfecta Caused by Bi-allelic Variants in KDELR2. The American Journal of Human Genetics, 107, 989-999. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Martínez-Glez, V., Valencia, M., Caparrós-Martín, J.A., Aglan, M., Temtamy, S., Tenorio, J., et al. (2012) Identification of a Mutation Causing Deficient BMP1/mTLD Proteolytic Activity in Autosomal Recessive Osteogenesis Imperfecta. Human Mutation, 33, 343-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Murakami, T., Saito, A., Hino, S., et al. (2009) Signalling Mediated by the Endoplasmic Reticulum Stress Transducer OASIS Is Involved in Bone Formation. Nature Cell Biology, 11, 1205-1211. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Faqeih, E., Shaheen, R. and Alkuraya, F.S. (2013) WNT1 Muta-tion with Recessive Osteogenesis Imperfecta and Profound Neurological Phenotype. Journal of Medical Genetics, 50, 491-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Laine, C.M., Joeng, K.S., Campeau, P.M., et al. (2013) WNT1 Mutations in Early-Onset Osteoporosis and Osteogenesis Imperfecta. The New England Journal of Medicine, 368, 1809-1916. [Google Scholar] [CrossRef]
|
|
[44]
|
Pyott, S.M., Tran, T.T., Leistritz, D.F., et al. (2013) WNT1 Mutations in Families Affected by Moderately Severe and Progressive recessive Osteogenesis Imperfecta. Amer-ican Journal of Human Genetics, 92, 590-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Keupp, K., Beleggia, F., Kayserili, H., et al. (2013) Mutations in WNT1 Cause Different Forms of Bone Fragility. American Journal of Human Genetics, 92, 565-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Gewartowska, O., Aranaz-Novaliches, G., Krawczyk, P.S., Mroczek, S., Kusio-Kobiałka, M., Tarkowski, B., Spoutil, F., Benada, O., Kofroňová, O., Szwedziak, P., Cysewski, D., Gruchota, J., Szpila, M., Chlebowski, A., Sedlacek, R., Prochazka, J. and Dziembowski, A. (2021) Cytoplasmic Poly-adenylation by TENT5A Is Required for Proper Bone Formation. Cell Reports, 35, Article ID: 109015. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hojo, H. and Ohba, S. (2022) Sp7 Action in the Skeleton: Its Mode of Action, Functions and Relevance to Skeletal Diseases. International Journal of Molecular Sciences, 23, Article 5647. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wang, J.S., Tokavanich, N. and Wein, M.N. (2023) SP7: From Bone Development to Skeletal Disease. Current Osteoporosis Reports, 21, 241-252. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lapunzina, P., Aglan, M., Temtamy, S., Caparros-Martin, J.A., Valencia, M., Leton, R., et al. (2010) Identification of a Frameshift Mutation in Osterix in a Patientwith Recessive Oste-ogenesis Imperfecta. American Journal of Human Genetics, 87, 110-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Al-Jallad, H., Palomo, T., Roughley, P., Glorieux, F.H., McKee, M.D., Moffatt, P. and Rauch, F. (2015) The Effect of SERPINF1 In-Frame Mutations in Osteogenesis Imperfecta Type VI. Bone, 76, 115-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Ghosh, D.K., Udupa, P., Shrikondawar, A.N., Bhavani, G.S., Shah, H., Ranjan, A. and Girisha, K.M. (2023) Mutant MESD Links Cellular Stress to Type I Collagen Aggregation in Osteogenesis Imperfecta Type XX. Matrix Biology, 115, 81-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Moosa, S., Yamamoto, G.L., Garbes, L., Keupp, K., Bele-za-Meireles, A., Moreno, C.A., Valadares, E.R., de Sousa, S.B., Maia, S., Saraiva, J., Honjo, R.S., Kim, C.A., Cabral de Menezes, H., Lausch, E., Lorini, P.V., Jr Lamounier, A., Carniero, T.C.B., Giunta, C., Rohrbach, M., Janner, M., Semler, O., Beleggia, F., Li, Y., Yigit, G., Reintjes, N., Altmüller, J., Nürnberg, P., Cavalcanti, D.P., Zabel, B., Warman, M.L., Bertola, D.R., Wollnik, B. and Netzer, C. (2019) Autosomal-Recessive Mutations in MESD Cause Osteogenesis Imper-fecta. American Journal of Human Genetics, 105, 836-843. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Dubail, J., Brunelle, P., Baujat, G., Huber, C., Doyard, M., Michot, C., Chavassieux, P., Khairouni, A., Topouchian, V., Monnot, S., Koumakis, E. and Cormier-Daire, V. (2020) Homozygous Loss-of-Function Mutations in CCDC134 Are Responsi-ble for a Severe Form of Osteognesis Imperfecta. Journal of Bone and Mineral Research, 35, 1470-1480. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Stürznickel, J., Jähn-Rickert, K., Zustin, J., et al. (2021) Compound Heter-ozygous Frameshift Mutations in MESD Cause a Lethal Syndrome Suggestive of Osteogenesis Imperfecta Type XX. Journal of Bone and Mineral Research, 36, 1077-1087. [Google Scholar] [CrossRef] [PubMed]
|