[1]
|
Lutty, G.A. (2017) Diabetic Choroidopathy. Vision Research, 139, 161-167.
https://doi.org/10.1016/j.visres.2017.04.011
|
[2]
|
Barth, T. and Helbig, H. (2021) Diabetische Retinopathie [Dia-betic Retinopathy]. Klinische Monatsblätter für Augenheilkunde, 238, 1143-1159. https://doi.org/10.1055/a-1545-9927
|
[3]
|
Hormel, T.T., Jia, Y., Jian, Y., Hwang, T.S., Bailey, S.T., Pennesi, M.E., et al. (2021) Plexus-Specific Retinal Vascular Anatomy and Pathologies as Seen by Projection-Resolved Optical Coher-ence Tomographic Angiography. Progress in Retinal and Eye Research, 80, Article ID: 100878. https://doi.org/10.1016/j.preteyeres.2020.100878
|
[4]
|
Klein, R., Klein, B.E., Moss, S.E., Davis, M.D. and DeMets, D.L. (1984) The Wisconsin Epidemiologic Study of Diabetic Retinopathy. III. Prevalence and Risk of Diabetic Reti-nopathy When Age at Diagnosis Is 30 or More Years. Archives of Ophthalmology, 102, 527-532. https://doi.org/10.1001/archopht.1984.01040030405011
|
[5]
|
Yan, L., Vaghari-Tabari, M., Malakoti, F., Moein, S., Qujeq, D., Yousefi, B. and Asemi, Z. (2022) Quercetin: An Effective Polyphenol in Alleviating Diabetes and Diabetic Complications. Critical Reviews in Food Science and Nutrition, 1-24. https://doi.org/10.1080/10408398.2022.2067825
|
[6]
|
Sharma, I., Yadav, K.S. and Mugale, M.N. (2022) Re-doxisome and Diabetic Retinopathy: Pathophysiology and Therapeutic Interventions. Pharmacological Research, 182, Article ID: 106292.
https://doi.org/10.1016/j.phrs.2022.106292
|
[7]
|
Zhang, J., Zhang, J., Zhang, C., et al. (2022) Diabetic Macular Edema: Current Understanding, Molecular Mechanisms and Therapeutic Implications. Cells, 11, Article No. 3362. https://doi.org/10.3390/cells11213362
|
[8]
|
Battista, M., Borrelli, E., Sacconi, R., Bandello, F. and Querques, G. (2020) Optical Coherence Tomography Angiography in Diabetes: A Review. European Journal of Ophthalmology, 30, 411-416.
https://doi.org/10.1177/1120672119899901
|
[9]
|
Mrejen, S. and Spaide, R.F. (2013) Optical Coherence Tomogra-phy: Imaging of the Choroid and Beyond. Survey of Ophthalmology, 58, 387-429. https://doi.org/10.1016/j.survophthal.2012.12.001
|
[10]
|
Hidayat, A. and Fine, B. (1985) Diabetic Choroidopathy: Light and Electron Microscopic Observations of Seven Cases. Ophthalmology, 67, 512-522. https://doi.org/10.1016/S0161-6420(85)34013-7
|
[11]
|
Fryczkowski, A.W. (1988) Diabetic Choroidal Involvement: Scanning Electron Microscopy Study. Klinika Oczna, 90, 145-149.
|
[12]
|
Fryczkowski, A.W., Hodes, B.L. and Walker, J. (1989) Diabetic Choroidal and Iris Vasculature Scanning Electron Microscopy Findings. International Ophthalmology, 13, 269-279. https://doi.org/10.1007/BF02280087
|
[13]
|
Dmitriev, A.V., Henderson, D. and Linsenmeier, R.A. (2016) Light-Induced pH Changes in the Intact Retinae of Normal and Early Diabetic Rats. Experimental Eye Research, 145, 148-157. https://doi.org/10.1016/j.exer.2015.11.015
|
[14]
|
Lutty, G.A. and McLeod, D.S. (2005) Phosphatase Enzyme Histochemistry for Studying Vascular Hierarchy, Pathology, and Endothelial Cell Dysfunction in Retina and Choroid. Vision Research, 45, 3504-3511.
https://doi.org/10.1016/j.visres.2005.08.022
|
[15]
|
Temel, E., Özcan, G., Yanık, Ö., et al. (2022) Choroidal Structur-al Alterations in Diabetic Patients in Association with Disease Duration, HbA1c Level, and Presence of Retinopathy. In-ternational Ophthalmology, 42, 3661-3672.
https://doi.org/10.1007/s10792-022-02363-w
|
[16]
|
Nesper, P.L. and Fawzi, A.A. (2018) Human Parafoveal Capil-lary Vascular Anatomy and Connectivity Revealed by Optical Coherence Tomography Angiography. Investigative Oph-thalmology & Visual Science, 59, 3858-3867.
https://doi.org/10.1167/iovs.18-24710
|
[17]
|
Cuenca, N., Ortuño-Lizarán, I., Sánchez-Sáez, X., et al. (2020) Inter-pretation of OCT and OCTA Images from a Histological Approach: Clinical and Experimental Implications. Progress in Retinal and Eye Research, 77, Article ID: 100828. https://doi.org/10.1016/j.preteyeres.2019.100828
|
[18]
|
Zoungas, S., Woodward, M., Li, Q., Cooper, M.E., et al. (2014) Impact of Age, Age at Diagnosis and Duration of Diabetes on the Risk of Macrovascular and Microvascular Complications and Death in Type 2 Diabetes. Diabetologia, 57, 2465-2474. https://doi.org/10.1007/s00125-014-3369-7
|
[19]
|
Kim, D.Y., Fingler, J., Zawadzki, R.J., et al. (2012) Noninvasive Imaging of the Foveal Avascular Zone with High-Speed, Phase-Variance Optical Coherence Tomography. Investigative Ophthalmology & Visual Science, 53, 85-92. https://doi.org/10.1167/iovs.11-8249
|
[20]
|
Ryu, G., Kim, I. and Sa-gong, M. (2021) Topographic Analysis of Retinal and Choroidal Microvasculature According to Diabetic Retinopathy Severity Using Optical Coherence Tomography Angiography. Graefe’s Archive for Clinical and Experimental Ophthal-mology, 259, 61-68. https://doi.org/10.1007/s00417-020-04785-7
|
[21]
|
Custo Greig, E., Brigell, M., Cao, F., et al. (2020) Macular and Peripapillary Optical Coherence Tomography Angiography Metrics Predict Progression in Diabetic Retinopathy: A Sub-Analysis of TIME-2b Study Data. American Journal of Ophthalmology, 219, 66-76. https://doi.org/10.1016/j.ajo.2020.06.009
|
[22]
|
Zafar, S., Sachdeva, M., Frankfort, B.J. and Channa, R. (2019) Ret-inal Neurodegeneration as an Early Manifestation of Diabetic Eye Disease and Potential Neuroprotective Therapies. Cur-rent Diabetes Reports, 194, Article No. 17.
https://doi.org/10.1007/s11892-019-1134-5
|
[23]
|
Zhang, X., Bao, S., Lai, D., Rapkins, R.W. and Gillies, M.C. (2008) Intravitreal Triamcinolone Acetonide Inhibits Breakdown of the Blood-Retinal Barrier through Differential Regu-lation of VEGF-A and Its Receptors in Early Diabetic Rat Retinas. Diabetes, 574, 1026-1033. https://doi.org/10.2337/db07-0982
|
[24]
|
Qiu, B., Zhao, L., Zhang, X., et al. (2021) Associations between Diabetic Retinal Microvasculopathy and Neuronal Degeneration Assessed by Swept-Source OCT and OCT Angiography. Fron-tiers in Medicine (Lausanne), 8, Article ID: 778283. https://doi.org/10.3389/fmed.2021.778283
|
[25]
|
Vujosevic, S., Muraca, A., Alkabes, M., Villani, E., Cavarzeran, F., Rossetti, L., et al. (2019) Early Microvascular and Neural Changes in Patients with Type 1 and Type 2 Diabetes Mellitus without Clinical Signs of Diabetic Retinopathy. Retina, 39, 435-445. https://doi.org/10.1097/IAE.0000000000001990
|
[26]
|
Zheng, Y., Cheung, N., Aung, T., Mitchell, P., He, M. and Wong, T.Y. (2009) Relationship of Retinal Vascular Caliber with Retinal Nerve Fiber Layer Thickness: The Singapore Malay Eye Study. Investigative Ophthalmology & Visual Science, 50, 4091-4096. https://doi.org/10.1167/iovs.09-3444
|
[27]
|
Yu, P.K., Cringle, S.J. and Yu, D.Y. (2014) Correlation between the Ra-dial Peripapillary Capillaries and the Retinal Nerve Fibre Layer in the Normal Human Retina. Experimental Eye Research, 129, 83-92.
https://doi.org/10.1016/j.exer.2014.10.020
|
[28]
|
Cao, D., Yang, D., Yu, H., et al. (2019) Optic Nerve Head Perfu-sion Changes Preceding Peripapillary Retinal Nerve Fibre Layer Thinning in Preclinical Diabetic Retinopathy. Clinical & Experimental Ophthalmology, 47, 219-225.
https://doi.org/10.1111/ceo.13390
|
[29]
|
Rodrigues, T.M., Marques, J.P., Soares, M., et al. (2019) Peripapillary Neurovascular Coupling in the Early Stages of Diabetic Retinopathy. Retina, 39, 2292-2302. https://doi.org/10.1097/IAE.0000000000002328
|
[30]
|
Shin, Y.I., Nam, K.Y., Lee, S.E., et al. (2019) Peripapillary Microvasculature in Patients with Diabetes Mellitus: An Optical Coherence Tomography Angiography Study. Scientific Reports, 9, Article No. 15814.
https://doi.org/10.1038/s41598-019-52354-8
|
[31]
|
Vujosevic, S., Muraca, A., Gatti, V., et al. (2018) Peripapillary Microvascular and Neural Changes in Diabetes Mellitus: An OCT-Angiography Study. Investigative Ophthalmology & Visual Science, 59, 5074-5081.
https://doi.org/10.1167/iovs.18-24891
|
[32]
|
Yuan, M., Wang, W., Kang, S., et al. (2022) Peripapillary Microvascu-lature Predicts the Incidence and Development of Diabetic Retinopathy: An SS-OCTA Study. American Journal of Oph-thalmology, 243, 19-27.
https://doi.org/10.1016/j.ajo.2022.07.001
|
[33]
|
Wilkinson-Berka, J.L., Agrotis, A. and Deliyanti, D. (2012) The Retinal Renin-Angiotensin System: Roles of Angiotensin II and Aldosterone. Peptides, 36, 142-150. https://doi.org/10.1016/j.peptides.2012.04.008
|
[34]
|
Ejaz, S., Chekarova, I., Ejaz, A., et al. (2008) Importance of Pericytes and Mechanisms of Pericyte Loss during Diabetes Retinopathy. Diabetes, Obesity and Metabolism, 10, 53-63.
|
[35]
|
Borrelli, E., Sacconi, R., Brambati, M., Bandello, F. and Querques, G. (2019) In Vivo Rotational Three-Dimensional OCTA Analysis of Microaneurysms in the Human Diabetic Retina. Scientific Reports, 9, Article No. 16789.
https://doi.org/10.1038/s41598-019-53357-1
|
[36]
|
Couturier, A., Mané, V., Bonnin, S., et al. (2015) Capillary Plexus Anomalies in Diabetic Retinopathy on Optical Coherence Tomography Angiography. Retina, 35, 2384-2391. https://doi.org/10.1097/IAE.0000000000000859
|
[37]
|
Salz, D.A., de Carlo, T.E., Adhi, M., et al. (2016) Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared with Fluo-rescein Angiography and Normal Eyes. JAMA Ophthalmology, 134, 644-650. https://doi.org/10.1001/jamaophthalmol.2016.0600
|
[38]
|
Cui, Y., Zhu, Y., Wang, J.C., et al. (2021) Comparison of Widefield Swept-Source Optical Coherence Tomography Angiography with Ultra-Widefield Colour Fundus Photog-raphy and Fluorescein Angiography for Detection of Lesions in Diabetic Retinopathy. British Journal of Ophthalmology, 105, 577-581.
https://doi.org/10.1136/bjophthalmol-2020-316245
|
[39]
|
Chen, R., Liang, A., Yao, J., et al. (2022) Fluorescein Leakage and Optical Coherence Tomography Angiography Features of Microaneurysms in Diabetic Retinopathy. Journal of Diabetes Research, 2022, Article ID: 7723706.
https://doi.org/10.1155/2022/7723706
|
[40]
|
Parravano, M., De Geronimo, D., Scarinci, F., et al. (2019) Progression of Diabetic Microaneurysms According to the Internal Reflectivity on Structural Optical Coherence Tomography and Visibility on Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 198, 8-16. https://doi.org/10.1016/j.ajo.2018.09.031
|
[41]
|
Hatano, M., Higashijima, F., Yoshimoto, T., et al. (2022) Evaluation of Microaneurysms as Predictors of Therapeutic Response to Anti-VEGF Therapy in Patients with DME. PLOS ONE, 17, e0277920.
https://doi.org/10.1371/journal.pone.0277920
|
[42]
|
Takamura, Y., Yamada, Y., Noda, K., et al. (2020) Characteris-tic Distribution of Microaneurysms and Capillary Dropouts in Diabetic Macular Edema. Graefe’s Archive for Clinical and Experimental Ophthalmology, 258, 1625-1630.
https://doi.org/10.1007/s00417-020-04722-8
|
[43]
|
Pan, J., Chen, D., Yang, X., Zou, R., Zhao, K., Cheng, D., Huang, S., Zhou, T., Yang, Y. and Chen, F. (2018) Characteristics of Neovascularization in Early Stages of Proliferative Diabetic Retinopathy by Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 192, 146-156. https://doi.org/10.1016/j.ajo.2018.05.018
|
[44]
|
de Carlo, T.E., Bonini Filho, M.A., Baumal, C.R., et al. (2016) Evaluation of Preretinal Neovascularization in Proliferative Diabetic Retinopathy Using Optical Coherence To-mography Angiography. Ophthalmic Surgery, Lasers and Imaging Retina, 47, 115-119. https://doi.org/10.3928/23258160-20160126-03
|
[45]
|
Arya, M., Sorour, O., Chaudhri, J., et al. (2020) Distin-guishing Intraretinal Microvascular Abnormalities from Retinal Neovascularization Using Optical Coherence Tomogra-phy Angiography. Retina, 40, 1686-1695.
https://doi.org/10.1097/IAE.0000000000002671
|
[46]
|
Stino, H., Niederleithner, M., Iby, J., et al. (2022) Detection of Diabetic Neovascularisation Using Single-Capture 65˚-Widefield Optical Coherence Tomography Angiography. Brit-ish Journal of Ophthalmology.
https://doi.org/10.1136/bjo-2022-322134
|
[47]
|
Zeng, Q.Z., Li, S.Y., Yao, Y.O., Jin, E.Z., Qu, J.F. and Zhao, M.W. (2022) Comparison of 24 × 20 mm2 Swept-Source OCTA and Fluorescein Angiography for the Evaluation of Lesions in Diabetic Retinopathy. International Journal of Ophthalmology, 15, 1798-1805.
|
[48]
|
Hirano, T., Hoshiyama, K., Takahashi, Y. and Murata, T. (2023) Wide-Field Swept-Source OCT Angiography (23 × 20 mm) for Detecting Retinal Neovascularization in Eyes with Proliferative Diabetic Retinopathy. Graefe’s Archive for Clinical and Experimental Ophthalmology, 261, 339-344. https://doi.org/10.1007/s00417-022-05878-1
|
[49]
|
Daruich, A., Matet, A., Moulin, A., Kowalczuk, L., Nicolas, M., Sellam, A., Rothschild, P.-R., Omri, S., Gélizé, E., Jonet, L., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68. https://doi.org/10.1016/j.preteyeres.2017.10.006
|
[50]
|
Spaide, R.F. (2016) Retinal Vascular Cystoid Macular Edema: Review and New Theory. Retina, 36, 1823-1842.
https://doi.org/10.1097/IAE.0000000000001158
|
[51]
|
Sun, Z., Tang, F., Wong, R., et al. (2019) OCT Angiography Metrics Predict Progression of Diabetic Retinopathy and Development of Diabetic Macular Edema: A Prospective Study. Ophthalmology, 126, 1675-1684.
https://doi.org/10.1016/j.ophtha.2019.06.016
|
[52]
|
Han, R., Gong, R., Liu, W. and Xu, G. (2022) Optical Coher-ence Tomography Angiography Metrics in Different Stages of Diabetic Macular Edema. Eye and Vision (London), 9, Ar-ticle No. 14.
https://doi.org/10.1186/s40662-022-00286-2
|
[53]
|
Huang, W.H., Lai, C.C., Chuang, L.H., et al. (2021) Foveal Mi-crovascular Integrity Association with Anti-VEGF Treatment Response for Diabetic Macular Edema. Investigative Oph-thalmology & Visual Science, 62, Article No. 41.
|
[54]
|
Lee, J., Moon, B.G., Cho, A.R. and Yoon, Y.H. (2016) Optical Coherence Tomography Angiography of DME and Its Association with Anti-VEGF Treatment Response. Ophthalmol-ogy, 123, 2368-2375.
https://doi.org/10.1016/j.ophtha.2016.07.010
|
[55]
|
Bonfiglio, V., Rejdak, R., Nowomiejska, K., et al. (2022) Effi-cacy and Safety of Subthreshold Micropulse Yellow Laser for Persistent Diabetic Macular Edema after Vitrectomy: A Pilot Study. Frontiers in Pharmacology, 13, Article ID: 832448. https://doi.org/10.3389/fphar.2022.832448
|
[56]
|
Yoneya, S., Tso, M.O. and Shimizu, K. (1983) Patterns of the Choriocapillaris. A Method to Study the Choroidal Vasculature of the Enucleated Human Eye. International Ophthal-mology, 6, 95-99. https://doi.org/10.1007/BF00127637
|
[57]
|
Loria, O., Kodjikian, L., Denis, P., et al. (2021) Quan-titative Analysis of Choriocapillaris Alterations in Swept Optical Coherence Tomography Angiography in Diabetic Pa-tients. Retina, 41, 1809-1818.
https://doi.org/10.1097/IAE.0000000000003102
|
[58]
|
Wang, W., Cheng, W., Yang, S., Chen, Y., Zhu, Z. and Huang, W. (2022) Choriocapillaris Flow Deficit and the Risk of Referable Diabetic Retinopathy: A Longitudinal SS-OCTA Study. British Journal of Ophthalmology.
https://doi.org/10.1136/bjophthalmol-2021-320704
|
[59]
|
Guo, X., Chen, Y., Bulloch, G., et al. (2023) Parapapillary Choroidal Microvasculature Predicts Diabetic Retinopathy Progression and Diabetic Macular Edema Development: A Three-Year Prospective Study. American Journal of Ophthalmology, 245, 164-173. https://doi.org/10.1016/j.ajo.2022.07.008
|
[60]
|
Nickla, D.L. and Wallman, J. (2010) The Multifunctional Choroid. Progress in Retinal and Eye Research, 29, 144-168.
https://doi.org/10.1016/j.preteyeres.2009.12.002
|
[61]
|
Borrelli, E., Palmieri, M., Viggiano, P., Ferro, G. and Mastropasqua, R. (2020) Photoreceptor Damage in Diabetic Choroidopathy. Retina, 40, 1062-1069. https://doi.org/10.1097/IAE.0000000000002538
|
[62]
|
Barteselli, G., Chhablani, J., El-Emam, S., et al. (2012) Cho-roidal Volume Variations with Age, Axial Length, and Sex in Healthy Subjects: A Three-Dimensional Analysis. Oph-thalmology, 119, 2572-2578.
https://doi.org/10.1016/j.ophtha.2012.06.065
|
[63]
|
Usui, S., Ikuno, Y., Akiba, M., Maruko, I., Sekiryu, T., Nishida, K. and Iida, T. (2012) Circadian Changes in Subfoveal Choroidal Thickness and the Relationship with Circulatory Fac-tors in Healthy Subjects. Investigative Ophthalmology & Visual Science, 53, 2300-2307. https://doi.org/10.1167/iovs.11-8383
|
[64]
|
Kim, M., Ha, M.J., Choi, S.Y. and Park, Y.H. (2018) Choroidal Vascu-larity Index in Type-2 Diabetes Analyzed by Swept-Source Optical Coherence Tomography. Scientific Reports, 8, Article No. 70.
https://doi.org/10.1038/s41598-017-18511-7
|
[65]
|
Xu, F., Li, Z., Yang, X., et al. (2023) Assessment of Choroidal Structural Changes in Patients with Pre- and Early-Stage Clinical Diabetic Retinopathy Using Wide-Field SS-OCTA. Frontiers in Endocrinology (Lausanne), 13, Article ID: 1036625. https://doi.org/10.3389/fendo.2022.1036625
|
[66]
|
Foo, V.H.X., Gupta, P., Nguyen, Q.D., et al. (2020) Decrease in Choroidal Vascularity Index of Haller’s Layer in Diabetic Eyes Precedes Retinopathy. BMJ Open Diabetes Research & Care, 8, e001295.
https://doi.org/10.1136/bmjdrc-2020-001295
|
[67]
|
Muir, E.R., Rentería, R.C. and Duong, T.Q. (2012) Reduced Ocular Blood Flow as an Early Indicator of Diabetic Retinopathy in a Mouse Model of Diabetes. Investigative Ophthal-mology & Visual Science, 53, 6488-6494.
https://doi.org/10.1167/iovs.12-9758
|