主动脉夹层发病的影响因素分析
Analysis of Influencing Factors in the Pathogenesis of Aortic Dissection
DOI: 10.12677/ACM.2023.1361336, PDF, HTML, XML,  被引量   
作者: 陈永昆, 张石龙, 张顺利, 廖陆枭:海南医学院第二附属医院心外科,海南 海口;王小啟*:云南省阜外心血管病医院心外科,云南 昆明
关键词: 主动脉夹层高血压吸烟Aortic Dissection Hypertension Smoking
摘要: 目的:研究不同因素对主动脉夹层(aortic dissection, AD)的影响,丰富健全AD的发病风险分层评估,为AD的预防及发病机制的研究提供新的思考。方法:病例对照研究,收集2019年4月至2022年10月在海南医学院第二附属医院就诊AD患者222例为实验组;收集对照组患者200例。对影响AD发生的因素采用logistics回归分析。结果:多因素logistics回归分型显示,男性(OR = 2.937, 95% CI 1.671~5.163, p < 0.05)、BMI (OR = 1.221, 95% CI 1.140~1.308, p < 0.05)、吸烟史(OR = 1.766, 95% CI 1.030~3.028, p = 0.039)、高血压(OR = 4.434, 5% CI 2.652~7.414, p < 0.05)与AD发病显著相关;男性OR = 4.075 (95% CI 2.086~7.962, p < 0.05)、BMI OR = 1.309 (95% CI 1.206~1.421, p < 0.001)、高血压OR = 2.753 (95% CI 1.511~5.016, p < 0.05)、TG OR = 0.331 (95% CI 0.194~0.564, p < 0.05)与A型主动脉夹层(Type A aortic dissection, TAAD)发病显著相关;吸烟(OR = 2.476, 95% CI 1.102~5.564, p < 0.05)、高血压(OR = 16.55, 95% CI 5.136~53.13, p < 0.05)、甘油三脂(Triglyceride, TG) (OR = 1.494, 95% CI 1.124~1.986, p < 0.05)与B型主动脉夹层(Type B aortic dissection, TBAD)发病显著相关。结论:男性、BMI、吸烟、TG等因素对AD的分型TAAD、TBAD的发病影响不同,可能与不同来源的血管平滑肌(vascular smooth muscle cells, vSMC)有关。
Abstract: Objective: To study the influence of different factors on aortic dissection (AD), enrich and improve the risk stratification assessment, and provide new thinking for the prevention and pathogenesis. Methods: In a case-control study, 222 AD patients in the Second Affiliated Hospital of Hainan Medi-cal University from April 2019 to October 2022 were collected as the experimental group. 200 pa-tients in the control group were collected. The factors affecting the occurrence of AD are analyzed by logistics regression. Results: Multi-factor logistics regression typing shows, Male (OR = 2.937, 95% CI 1.671~5.163, p < 0.05), BMI (OR = 1.221, 95% CI 1.140~1.308, p < 0.05), smoking history (OR = 1.766, 95% CI 1.030~3.028, p = 0.039), hypertension (OR = 4.434, 95% CI 2.652~7.414, p < 0.05) were significantly correlated with the incidence of AD. Male OR = 4.075 (95% CI 2.086~7.962, p < 0.05), BMI OR = 1.309 (95% CI 1.206~1.421, p< 0.001), hypertension OR = 2.753 (95% CI 1.511~5.016, p < 0.05), TG OR = 0.331 (95% CI 0.194~0.564, p < 0.05) were significantly correlated with Type A aortic dissection (TAAD). Smoking (OR = 2.476, 95% CI 1.102~5.564, p < 0.05), hyper-tension (OR = 16.55, 95% CI 5.136~53.13, p < 0.05), Triglyceride (TG) (OR = 1.494, 95% CI 1.124~1.986, p < 0.05) was significantly associated with Type B aortic dissection (TBAD). Conclu-sions: Male, BMI, smoking, TG and other factors have different effects on the incidence of AD classi-fication TAAD and TBAD, which may be related to different sources of vSMC.
文章引用:陈永昆, 张石龙, 张顺利, 廖陆枭, 王小啟. 主动脉夹层发病的影响因素分析[J]. 临床医学进展, 2023, 13(6): 9541-9550. https://doi.org/10.12677/ACM.2023.1361336

1. 引言

2019年,我国有五分之二的城乡人口死亡是由心血管疾病导致,据估算我国有3.3亿人患有心血管疾病,全国心脑血管疾病住院总费用为3133.66亿元 [1] 。主动脉夹层(aortic dissection, AD)是一种极其凶险的心血管疾病,是心血管领域急危重症的疾病之一。特别是A型主动脉夹层(type A aortic dissection, TAAD),据报道,未经治疗的TAAD患者在症状出现后每小时死亡率增加约1%至2%,高达90%的患者在30天内死亡 [2] [3] [4] 。AD以中老年发病为主,The International Registry of Acute Aortic Dissection (IRAD)数据显示,AD发病平均年龄为63岁,超过三分之二的患者是男性 [5] [6] 。我国是一个人口超过14亿的超级人口大国,随着社会人口老龄化的进展,预计我国人口超过60岁的老年人将由2020年2.64亿人迅速增加至2025年3.09亿人。随着我国经济发展,人民生活水平的提高,对医疗健康有了更高的要求。人口老年化将使我们不得不面对更多的主动脉夹层患者,给我国心血管疾病急危重症的救治带来新的挑战。通过不同因素对主动脉夹层(aortic dissection, AD)的影响,丰富健全AD的发病风险分层评估,为AD的预防及发病机制的研究提供新的思考。

2. 资料和方法

2.1. 研究对象

经海南医学院第二附属医院医学伦理委员会批准选择2019年4月至2022年10月在海南医学院第二附属医院就诊,经CTA检查确诊为AD患者。根据纳入及排除标准连续收集AD患者222例,其中TAAD有160例,TBAD有62例;随机选择同期住院的非AD患者为对照组,根据纳入及排除标收集对照组患者200例。

2.2. 实验分组及纳入排除标准

1) 实验组

2019年4月至2022年10月在海南医学院第二附属医院就诊的AD患者273人,根据纳入排除标准收集222例为实验组。

纳入标准:

① 2019年4月至2022年10月在海南医学院第二附属医院就诊年龄大于18岁,经CTA检查确诊为AD的患者;

② ABO血型、年龄、性别、高血压、BMI、TC、TG、HDL-c、LDL-c、吸烟史、饮酒史等资料完整;

③ 签署研究知情同意。

排除标准:

① 未经CTA确诊的疑似AD患者;

② 入院未记录身高、体重,无生化检查及病历资料不完整;

③ AD二次入院患者。

2) 对照组

采用SPSS23.0根据住院号随机选择同期在海南医学院住院治疗年龄大于18岁,并且入院科室非心血管内科以及非心血管外科住院治疗的非AD患者273人,根据纳入排除标准收集患者200例为对照组。

纳入标准:

① 随机选择同期在海南医学院第二附属医院住院治疗年龄大于18岁非AD患者;

② ABO血型、年龄、性别、BMI、高血压、TC、TG、HDL-c、LDL-c、吸烟史、饮酒史资料完整。

排除标准:

① 入院未记录血压测量、身高、体重,无生化检查及病历资料不完整。

2.3. 研究方法

1) 病例对照研究

此次研究采用病例对照研究方法,收集2019年4月至2022年10月在海南医学院第二附属医院就诊AD患者273人,根据纳入及排除标准最终收集AD患者222例为实验组;随机选择同期住院非AD患者273例,根据纳入排除标准最终收集对照组患者200例。均收集病史资料及入院实验室检查资料,包括ABO血型、年龄、性别、BMI、高血压、TC、TG、HDL-c、LDL-c、吸烟史、饮酒史。

2) 定义、检测方法

高血压定义为入院记录明确记载“高血压”或是本次入院为诊断为高血压,住院高血压诊断标准为:非同日3次测量收缩压 ≥ 140 mmHg和/或舒张压 ≥ 90 mmHg;吸烟定义为入院记录中明确记载“吸烟”,并且吸烟超过5年,戒烟不超过2年;饮酒定义为入院记录中明确记载“饮酒”,并且饮酒超过1年,戒酒不超过1年。升主动脉定义为主动脉根部至头臂干动脉;主动脉弓定义为头臂干动脉至左锁骨下动脉;其他位置定义为除升主动脉和主动脉弓以外的主动脉。ABO血型检测采用西班牙Diana全自动血型分析系统进行检测,微柱凝胶检测卡为西班牙Diana公司专用卡,反定型用红细胞为上海血液医药生物有限责任公司生产。

3) 统计分析方法

采用SPSS23.0进行统计分析;计量资料结果用平均值 ± 标准差表示,差异性检验符合正态分布资料采用t检验,不符正态分布采用Wilcoxon rank-sum检验;计数资料用百分比表示,组间率的差异比较采用χ2检验;ABO血型、年龄、性别、BMI指数、TC、TG、HDL-c、LDL-c、吸烟史、饮酒史、高血压等因素对AD的影响采用多因素二元logistics回归模型分析,单因素回归分析有意义纳入多因素回归模型分析,p < 0.05认为差异具有统计学意义。

3. 结果

3.1. 一般资料分析

一般资料分析发现,AD组男性(82.88% vs. 52%)、吸烟史(48.65% vs. 27%)、高血压(85.59% vs. 43%)占比显著高于对照组,p < 0.05,差异具有统计学意义;AD组BMI 25 ± 4.00 kg/m2,高于对照组21.98 ± 3.31 kg/m2,p < 0.05,差异具有统计学意义;AD组与对照相比,年龄、TC、HDL-c、LDL-c、TG、饮酒史占比相似,差异不具有统计学意义(表1)。

Table 1. General data comparison

表1. 一般资料比较

注:** p < 0.01。

3.2. TAAD、TBAD、AD影响因素的Logistics回归分析

对TAAD纳入研究的因素进行单因素logistic回归分析发现,男性(OR = 4.325, 95% CI 2.657~7.126, p < 0.05)、BMI (OR = 1.311, 95% CI 1.222~1.406, p < 0.05)、吸烟史(OR = 2.103, 95% CI 1.352~3.270, p < 0.05)、高血压(OR = 6.832, 95% CI 4.124~11.318, p < 0.05)、B型血(OR = 0.583, 95% CI 0.357~0.964, p < 0.05) TG (OR = 0.42, 95% CI 0.277~0.651, p < 0.05)是TAAD发病的潜在影响因素。将单因素回归分析具有统计意义的潜在影响因素纳入多因素回顾模型,分析可知男性OR = 4.075 (95% CI 2.086~7.962, p < 0.05)、BMI OR = 1.309 (95% CI 1.206~1.421, p < 0.001)、高血压OR = 2.753 (95% CI 1.511~5.016, p < 0.05)是发生TAAD的独立危险因素;TG OR = 0.331 (95% CI 0.194~0.564, p < 0.05)是TAAD的保护性因素(表2)。

对TABD纳入研究的因素进行单因素logistic回归分析发现,男性(OR = 4.800, 95% CI 2.657~7.126, p < 0.05)、BMI (OR = 1.175, 95% CI 1.071~1.289, p < 0.05)、吸烟(OR = 4.281, 95% CI 2.352~7.791, p < 0.05)、高血压(OR = 15.11, 95% CI 5.809~39.312, p < 0.05)、TG (OR = 1.545, 95% CI 1.134~2.104, p < 0.05)。将单因素回归分析具有统计意义的潜在影响因素纳入多因素回顾模型,分析可知吸烟(OR = 2.476, 95% CI 1.102~5.564, p < 0.05)、高血压(OR = 16.55, 95% CI 5.136~53.13, p < 0.05)、TG (OR = 1.494, 95% CI 1.124~1.986, p < 0.05)是TABD的独立危险因素(表3)。

将纳入研究的AD影响因素进行单因素logistics回归分析显示,男性(OR = 4.470, 95% CI 2.861~6.982, p < 0.05)、BMI (OR = 1.272, 95% CI 1.194~1.355, p < 0.05)、吸烟史(OR = 2.561, 95% CI 1.703~3.853, p < 0.05)、高血压(OR = 7.871, 95% CI 4.931~12.563, p < 0.05)是AD的潜在影响因素。单因素回归分析有统计学意义的影响因素纳入多因素回归模型分析,可发现男性(OR = 2.937, 95% CI 1.671~5.163, p < 0.05)、BMI (OR = 1.221, 95% CI 1.140~1.308, p < 0.05)、吸烟史(OR = 1.766, 95% CI 1.030~3.028, p = 0.039)、高血压(OR = 4.434, 95% CI 2.652~7.414, p < 0.05)是发生AD的独立危险因素(表4)。

Table 2. Logistics regression analysis of TAAD influencing factors

表2. TAAD影响因素的logistics回归分析

*p < 0.05,**p < 0.01;单因素回归分析p < 0.05,纳入多因素回归分析。

Table 3. Logistics regression analysis of TBAD influencing factors

表3. TBAD影响因素的logistics回归分析

*p < 0.05,**p < 0.01;单因素回归分析p < 0.05,纳入多因素回归分析。

Table 4. Logistics regression analysis of AD influencing factors

表4. AD影响因素的logistics回归分析

*p < 0.05,**p < 0.01;单因素回归分析p < 0.05,纳入多因素回归分析。

3.3. 讨论

年龄是许多慢性疾病的自然因素,随着年龄增长,机体各器官的衰退,随之出现各种伴随机体器官功能衰退而出现的老年性疾病。和许多心血管疾病类似,AD发的发病年龄以中老年发病为主。IRAD数据显示,AD的发病平均年龄为63岁 [5] 。此次研究观察到的AD发病年龄平均56.93岁,较以西方国家为主IRAD的AD患者年轻。与国内一些观察性研究结果一致,我国的AD患者年龄低于西方国家患者 [7] [8] 。与西方国家发病年龄上的差异,是否由于种族差异引起的还有待进一步证实。根据IRAD和国内数据研究显示,AD患者中有三分之二或三分之二以上是男性 [5] [7] ,人群中的AD发病率男性高于女性(9.1/10万vs. 5.4/10万) [9] 。此次病例对照研究发现,AD患者中男性占比显著高于男性,差异具有统计学意义,和国内外性别差异观察研究结果一致。在国外一些观察性研究中发现AD患者中不但男性占比高于女性,并且男性发病的平均年龄低于女性患者(70岁及以上的女性占49.7%,男性占28.6%) [6] [10] 。在一些心血管疾病中同样表现出性别差异,如心衰 [11] 、高血压、缺血性心肌病 [12] 等。目前的研究认为,造成心血管疾病性别差异的原因主要包括遗传、表观遗传、性激素及性激素受体表达差异和心血管细胞生物学功能实现的性别差异等 [12] 。在小鼠AD模型实验中,发现雌性激素对小鼠AD的发生具有保护作用 [13] 。性激素对AD的影响,仍需更多的实验数据以及临床数据进一步证实。在对AD进一步分型差异分析显示,TAAD性别差异存在统计学意义,而TBAD性别无显著性差异。由于TAAD与TBAD是根据主动脉解剖位置进行划分 [14] ,因而性别对TAAD、TABD的影响可能与主动脉解剖位置有关。由于选择偏倚等局限存在,仍需更多数据、样本进一步研究证实。

研究发现,许多疾病与BMI存在相关性,高BMI会导致冠心病的发病风险增加 [15] 。在日本,体重过轻与出血性中风和IHD死亡率显著相关,肥胖会导致心血管疾病总死亡率和个别心血管疾病死亡率的增加 [16] 。BMI不仅增加疾病的发病风险,也会影响某些手术的疗效。如BMI是主动脉弓置换手术术后急性肾损伤(AKI)的独立危险因素,BMI ≥ 24 kg/m2术后发生AKI的风险增加2.35倍。(OR = 3.35, 95% CI 1.15~9.74) [17] 。肥胖患者(BMI ≥ 30 kg/m2)与没有肥胖的患者相比,接受A型急性主动脉夹层手术的患者手术死亡率更高,出现低心排血量综合征、肺部并发症以及其他术后并发症的风险更高 [18] 。国内研究同样发现,BMI是TAAD修复手术多种术后并发症的独立危险因素 [19] 。在此次病例对照研究中发现,AD患者BMI高于对照组,多因素logistics回归分析显示BMI是AD、TAAD发病的危险因素。在对AD分析进步分析发现,BMI是发生TAAD的独立危险因素,但是对TBAD则无显著性影响。由于TAAD与TBAD是根据主动脉解剖位置进行划分 [14] ,因而BMI对TAAD、TABD的影响可能与主动脉解剖位置有关。由于选择偏倚等局限存在,仍需更多数据、样本进一步研究证实。高血压是冠心病、血管瘤、卒中等 [20] [21] 多种心脑血管疾病的危险因素,也是多种手术术后并发症、死亡率的危险因素。有高血压等心血管高危因素的非心血血管手术患者,发生围手术期心肌梗死风险高于无危险因素患者 [22] 。此次研究中我们观察到AD患者中有85.59%有高血压,显著高于对照,多因素分显示是AD的危险因素,发生AD风险高血压是非高血压的4.434倍,发生TAAD风险高血压是非高血压的2.753倍,生TBAD风险高血压是非高血压的16.55倍。国外研究同样证实高血压、收缩压每增20毫米汞柱RR = 1.39和舒张压每增加10毫米汞柱是AD发病的危险因素 [23] 。不同生活习惯也会造成疾病的发病差异,特别是不良生活习惯对疾病的影响。吸烟是众多不良生活习惯之一,也是许多疾病的危险因素 [24] [25] [26] [27] 。在日本人群中研究发现,吸烟会导致主动脉疾病死亡风险增加,而戒烟则可以降低主动脉疾病死亡风险 [28] 。内膜损伤和中膜结构减弱是AD发病的关键病理改变,血管平滑肌(vSMC)死亡是AD发病的重要诱发因素 [29] 。研究发现,在TAA和AD吸烟患者中血管壁弹性减退与T和B细胞诱导的弹性蛋白特异性的自体反应有关 [30] 。目前仍缺乏直接临床证据,证实吸烟造成AD发病风险差异。此次研究发现,吸烟发生AD风险是不吸烟的1.766倍,是发生AD的危险因素。AD分型则显示,吸烟对TAAD无显著影响,但却是TBAD的独立危险因素。由TAAD与TBAD的划分是根据主动脉解剖结构划分,因而推测吸烟对不同解剖位置的主动脉影响不同。但是由于中心研究的局限性以及选择偏倚,不排除吸烟对TAAD、TBAD的影响是由误差引起,我们需要更多的数据研究进一步证实。饮酒对心血管疾病的影响,通常与酒精含量有关 [31] 。有动物实验研究显示乙醛脱氢酶2缺乏对AD的发生具有抑制作用 [32] 。本次研究未发现饮酒对AD、TAAD及TBAD发病的影响。是否由于此次研究未对饮酒进行量化区分,而造成“饮酒对AD的发病无影响”仍需跟多研究进一步证实。

血脂异常是心脑血管疾病的危险因素之一 [33] ,血液循环中的LDL-c和TG浓度与CVD的发病风险有关 [34] [35] [36] 。有研究发现,TAAD患者血脂代谢明显异常,血清TG/HDL-c水平与TAAD患者住院死亡率呈正相关 [37] 。TG/HDL-c比值与中国人群TBAD住院病死率呈非线性关系,当该比率小于2.05时,住院死亡率增加 [38] 。也有研究法相LDL-c水平与长期死亡风险相关,较低的入院LDL-c水平可能与TAAD长期死亡风险增加有关 [39] 。血脂对AD发病风险的影响,Yiheng Yang等人研究发现血液中高浓度Lp(a)与AD的发病密切相关,但是LDL-c对AD发病应先无显著性差异 [40] 。而Martin Schillinger等研究却发现AD患者的Lp(a)浓度与健康对照组没有显著差异 [41] 。Xinbo Liu等研究TC、TG、LDL、HDL、ApoA1、ApoB1浓度、TNF-α、IL-1β、IL-6、IL-10浓度均与AD发生显著相关 [42] 。目前,血脂对AD发病的影响仍然存在争议。我们研究发现TG水平与AD发病无显著性差异,但是在AD分型表现出不同发病差异。研究发现TG是TAAD的保护因素,而对于TBAD则是危险因素。由于TAAD、TBAD是根据解剖结构进行划分 [14] ,因而我们推测TG对主动脉的影响存在解剖位置上的差异。但是由于中心研究的局限性以及选择偏倚,不排除TG对TAAD、TBAD的影响是由误差引起,我们需要更多的数据研究进一步证实。研究显示,TC、LDL-c以及HDL-c对TAAD、TBAD、AD发病无显著影响。此次研究能够为血脂对AD发病的影响提供新的数据补充,血脂对AD的影响是否与主动脉解剖位置有关,需要多研究进一步证实。

本次研究发现,男性、BMI、高血压是发生TAAD的独立危险因素,TG是TAAD的保护性因素;吸烟、高血压、TG是TBAD的独立危险因素;而男性、BMI、吸烟以及高血压是AD的独立危险因素;ABO血型对AD、TAAD、TBAD发病无显著性差异。研究还发现,男性、BMI、吸烟、TG等因素对AD的分型TAAD、TBAD的发病影响不同。主动脉血管壁中膜vSMC的结膜结构功能改变,是发生和促进AD发展的关键。主动脉壁内的应激源,包括炎症细胞浸润和基因遗传改变等,通过调节vSMC功能并干扰vSMC的正常过程促进AD的发生和进展 [43] 。升主动脉的vSMC来源于神经嵴,降主动脉和腹主动脉的vSMC来源于中胚层和内皮细胞 [44] [45] 。由于TAAD、TBAD分型是根据主动脉解剖位置进划分 [14] ,因而我们推测男性、BMI、吸烟、TG等因素对不同来源的vSMC影响不同。但是由于单中心研究的局限性,我们不排除这种差异是由于选择偏倚等误差引起,我们仍需跟多的研究进一步证实。

4. 结论

男性、BMI、吸烟、TG等因素对AD的分型TAAD、TBAD的发病影响不同,可能与vSMC有关。

NOTES

*通讯作者。

参考文献

[1] Writing Committee of the Report on Cardiovascular Health and Diseases in China (2022) Report on Cardiovascular Health and Diseases in China 2021: An Updated Summary. Biomedical and Environmental Sciences, 35, 573-603.
[2] Mussa, F.F., Horton, J.D., Moridzadeh, R., et al. (2016) Acute Aortic Dissection and Intramural Hema-toma: A Systematic Review. JAMA, 316, 754-763. [Google Scholar] [CrossRef] [PubMed]
[3] Fann, J.I., Smith, J.A., Miller, D.C., et al. (1995) Surgical Management of Aortic Dissection during a 30-Year Period. Circulation, 92, 113-121. [Google Scholar] [CrossRef
[4] Scholl, F.G., Coady, M.A., Davies, R., et al. (1999) Inter-val or Permanent Nonoperative Management of Acute Type A Aortic Dissection. The Archives of Surgery, 134, 402-405. [Google Scholar] [CrossRef] [PubMed]
[5] Evangelista, A., Isselbacher, E.M., Bossone, E., et al. (2018) In-sights from the International Registry of Acute Aortic Dissection: A 20-Year Experience of Collaborative Clinical Re-search. Circulation, 137, 1846-1860. [Google Scholar] [CrossRef
[6] Bossone, E., Carbone, A. and Eagle, K.A. (2022) Gender Differences in Acute Aortic Dissection. Journal of Personalized Medicine, 12, Article 1148. [Google Scholar] [CrossRef] [PubMed]
[7] Li, Y., Yang, N., Duan, W., et al. (2012) Acute Aortic Dissection in China. American Journal of Cardiology, 110, 1056-1061. [Google Scholar] [CrossRef] [PubMed]
[8] Axtell, A.L., Xue, Y., Qu, J.Z., et al. (2020) Type A Aortic Dissection in the East and West: A Comparative Study between Two Hospitals from China and the US. Journal of Car-diac Surgery, 35, 2168-2174. [Google Scholar] [CrossRef] [PubMed]
[9] Smedberg, C., Steuer, J., Leander, K. and Hultgren, R. (2020) Sex Differ-ences and Temporal Trends in Aortic Dissection: A Population-Based Study of Incidence, Treatment Strategies, and Outcome in Swedish Patients during 15 Years. European Heart Journal, 41, 2430-2438. [Google Scholar] [CrossRef] [PubMed]
[10] Nienaber, C.A., Fattori, R., Mehta, R.H., et al. (2004) Gen-der-Related Differences in Acute Aortic Dissection. Circulation, 109, 3014-3021. [Google Scholar] [CrossRef
[11] Cleland, J.G., Swedberg, K., Follath, F., et al. (2003) The EuroHeart Failure Survey Programme—A Survey on the Quality of Care among Patients with Heart Failure in Eu-rope. Part 1: Patient Characteristics and Diagnosis. European Heart Journal, 24, 442-463. [Google Scholar] [CrossRef
[12] Regitz-Zagrosek, V. and Kararigas, G. (2017) Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiological Reviews, 97, 1-37. [Google Scholar] [CrossRef] [PubMed]
[13] Qi, X., Wang, F., Chun, C., et al. (2020) A Validated Mouse Model Capable of Recapitulating the Protective Effects of Female Sex Hormones on Ascending Aortic Aneurysms and Dissections (AADs). Physiological Reports, 8, e14631. [Google Scholar] [CrossRef] [PubMed]
[14] Sherk, W.M., Khaja, M.S. and Williams, D.M. (2021) Anatomy, Pa-thology, and Classification of Aortic Dissection. Techniques in Vascular and Interventional Radiology, 24, Article ID: 100746. [Google Scholar] [CrossRef] [PubMed]
[15] Cui, R.I.H., Toyoshima, H., Date, C., et al. (2005) Body Mass In-dex and Mortality from Cardiovascular Disease among Japanese Men and Women: The JACC Study. Stroke, 36, 1377-1382. [Google Scholar] [CrossRef
[16] Funada, S., Shimazu, T., Kakizaki, M., et al. (2008) Body Mass Index and Cardiovascular Disease Mortality in Japan: The Ohsaki Study. Preventive Medicine, 47, 66-70. [Google Scholar] [CrossRef] [PubMed]
[17] Liu, T., Fu, Y., Liu, J., et al. (2021) Body Mass Index Is an In-dependent Predictor of Acute Kidney Injury after Urgent Aortic Arch Surgery for Acute DeBakey Type I Aortic Dissec-tion. Journal of Cardiothoracic Surgery, 16, Article No. 145. [Google Scholar] [CrossRef] [PubMed]
[18] Lio, A., Bovio, E., Nicolo, F., et al. (2019) Influence of Body Mass Index on Outcomes of Patients Undergoing Surgery for Acute Aortic Dissection: A Propensity-Matched Analysis. Texas Heart Institute Journal, 46, 7-13. [Google Scholar] [CrossRef
[19] Lin, L., Lin, Y., Chen, Q., et al. (2021) Association of Body Mass Index with In-Hospital Major Adverse Outcomes in Acute Type A Aortic Dissection Patients in Fujian Province, China: A Retrospective Study. Journal of Cardiothoracic Surgery, 16, Article No. 47. [Google Scholar] [CrossRef] [PubMed]
[20] Lewington, S., Clarke, R., Qizilbash, N., et al. (2002) Prospec-tive Studies Collaboration. Age-Specific Relevance of Usual Blood Pressure to Vascular Mortality: A Meta-Analysis of Individual Data for One Million Adults in 61 Prospective Studies. The Lancet, 360, 1903-1913. [Google Scholar] [CrossRef
[21] Levanovich, P.E., Diaczok, A. and Rossi, N.F. (2020) Clini-cal and Molecular Perspectives of Monogenic Hypertension. Current Hypertension Reviews, 16, 91-107. [Google Scholar] [CrossRef] [PubMed]
[22] Wilcox, T., Smilowitz, N.R., Xia, Y.H., Beckman, J.A. and Berger, J.S. (2021) Cardiovascular Risk Factors and Perioperative Myocardial Infarction after Noncardiac Surgery. Canadian Journal of Cardiology, 37, 224-231. [Google Scholar] [CrossRef] [PubMed]
[23] Hibino, M., Otaki, Y., Kobeissi, E., et al. (2021) Blood Pressure, Hypertension and the Risk of Aortic Dissection Incidence and Mortality: Results from the Japan-Specific Health Check-ups Study, the UK Biobank Study and a Meta-Analysis of Cohort Studies. Circulation, 145, 633-644. [Google Scholar] [CrossRef
[24] Frey, P. and Waters, D.D. (2011) Tobacco Smoke and Cardiovascular Risk: A Call for Continued Efforts to Reduce Exposure. Current Opinion in Cardiology, 26, 424-428. [Google Scholar] [CrossRef
[25] Lugg, S.T., Scott, A., Parekh, D., et al. (2022) Cigarette Smoke Exposure and Alveolar Macrophages: Mechanisms for Lung Disease. Thorax, 77, 94-101. [Google Scholar] [CrossRef] [PubMed]
[26] Badran, M. and Laher, I. (2020) Waterpipe (Shisha, Hookah) Smoking, Oxidative Stress and Hidden Disease Potential. Redox Biology, 34, Article ID: 101455. [Google Scholar] [CrossRef] [PubMed]
[27] Ambrose, J.A. and Barua, R.S. (2004) The Pathophysiology of Cigarette Smoking and Cardiovascular Disease: An Update. Journal of the American College of Cardiology, 43, 1731-1737. [Google Scholar] [CrossRef] [PubMed]
[28] Yang, Y., Yamagishi, K., Kihara, T., et al. (2022) Smoking Cessation and Mortality from Aortic Dissection and Aneurysm: Findings from the Japan Collaborative Cohort (JACC) Study. Journal of Atherosclerosis and Thrombosis, 30, 348-363. [Google Scholar] [CrossRef] [PubMed]
[29] Wu, D., Shen, Y.H., Russell, L., et al. (2013) Molecular Mechanisms of Thoracic Aortic Dissection. Journal of Surgical Research, 184, 907-924. [Google Scholar] [CrossRef] [PubMed]
[30] Gu, B.H., Choi, J.C., Shen, Y.H., et al. (2019) Elastin-Specific Au-toimmunity in Smokers with Thoracic Aortic Aneurysm and Dissection Is Independent of Chronic Obstructive Pulmo-nary Disease. Journal of the American Heart Association, 8, e011671. [Google Scholar] [CrossRef
[31] Gardner, J.D. and Mouton, A.J. (2015) Alcohol Effects on Cardiac Function. Comprehensive Physiology, 5, 791-802. [Google Scholar] [CrossRef] [PubMed]
[32] Yang, K., Ren, J., Li, X., et al. (2020) Prevention of Aortic Dissection and Aneurysm via an ALDH2-Mediated Switch in Vascular Smooth Muscle Cell Phenotype. European Heart Journal, 41, 2442-2453. [Google Scholar] [CrossRef] [PubMed]
[33] Srikanth, S. and Deedwania, P. (2016) Management of Dyslipidemia in Patients with Hypertension, Diabetes, and Metabolic Syndrome. Current Hypertension Reports, 18, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
[34] Musunuru, K. (2010) Atherogenic Dyslipidemia: Cardiovascular Risk and Dietary Intervention. Lipids, 45, 907-914. [Google Scholar] [CrossRef] [PubMed]
[35] Gao, S., Zhao, D., Wang, M., et al. (2017) Association between Circulating Oxidized LDL and Atherosclerotic Cardiovascular Disease: A Meta-Analysis of Observational Studies. Ca-nadian Journal of Cardiology, 33, 1624-1632. [Google Scholar] [CrossRef] [PubMed]
[36] Cupido, A.J., Asselbergs, F.W., Schmidt, A.F. and Hovingh, G.K. (2022) Low-Density Lipoprotein Cholesterol Attributable Cardiovascular Disease Risk Is Sex Specific. Journal of the American Heart Association, 11, e024248. [Google Scholar] [CrossRef
[37] Lin, Y.J., Lin, J.L., Peng, Y.C., et al. (2022) TG/HDL-C Ratio Predicts in-Hospital Mortality in Patients with Acute Type A Aortic Dissection. BMC Cardiovascular Disorders, 22, Article No. 346. [Google Scholar] [CrossRef] [PubMed]
[38] Zhou, Y., Yang, G., He, H., et al. (2020) Triglycer-ide/High-Density Lipoprotein Cholesterol Ratio Is Associated with In-Hospital Mortality in Acute Type B Aortic Dissec-tion. BioMed Research International, 2020, Article ID: 5419846. [Google Scholar] [CrossRef] [PubMed]
[39] Zeng, X., Zhou, X., Tan, X.R., et al. (2021) Admission LDL-C and Long-Term Mortality in Patients with Acute Aortic Dissection: A Survival Analysis in China. Annals of Translational Medicine, 9, Article 1345. [Google Scholar] [CrossRef] [PubMed]
[40] Yang, Y.H., Hong, Y.T., Yang, W.H. and Zheng, Z.Z. (2022) Associa-tion of Lipoprotein(a) with Aortic Dissection. Clinical Cardiology, 45, 908-912. [Google Scholar] [CrossRef] [PubMed]
[41] Schillinger, M., Domanovits, H., Ignatescu, M., et al. (2002) Lipoprotein(a) in Patients with Aortic Aneurysmal Disease. Journal of Vascular Surgery, 36, 25-30. [Google Scholar] [CrossRef] [PubMed]
[42] Liu, X.B., Liu, J., Li, Y.J. and Zhang, H. (2022) The Correlation between the Inflammatory Effects of Activated Macrophages in Atherosclerosis and Aortic Dissection. Annals of Vascu-lar Surgery, 85, 341-346. [Google Scholar] [CrossRef] [PubMed]
[43] Rombouts, K.B., Van Merrienboer, T.A.R., Ket, J.C.F., et al. (2022) The Role of Vascular Smooth Muscle Cells in the Development of Aortic Aneurysms and Dissections. European Journal of Clinical Investigation, 52, e13697. [Google Scholar] [CrossRef] [PubMed]
[44] Gittenberger-De Groot, A.C., Deruiter, M.C., Bergwerff, M. and Poelmann, R.E. (1999) Smooth Muscle Cell Origin and Its Relation to Heterogeneity in Development and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 1589-1594. [Google Scholar] [CrossRef
[45] Bergwerff, M., Verberne, M.E., DeRuiter, M.C., Poelmann, R.E. and Gittenberger-de-Groot, A.C. (1998) Neural Crest Cell Contribution to the Developing Circulatory System: Implications for Vascular Morphology? Circulation Research, 82, 221-231. [Google Scholar] [CrossRef