|
[1]
|
Nick, T., Lauren, W., Prachi, B., et al. (2016) Cardiovascular Disease in Europe: Epidemiological Update 2016. Europe-an Heart Journal, 37, 3232-3245. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
基层心血管病综合管理实践指南2020 [J]. 中国医学前沿杂志(电子版), 2020, 12(8): 1-73.
|
|
[3]
|
Kowalska, K., Wilczopolski, P., Buławska, D., et al. (2022) The Importance of SGLT-2 Inhibitors as Both the Prevention and the Treatment of Diabetic Cardiomyopathy. An-tioxidants, 11, Article No. 2500. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kosmas, C.E., Bousvarou, M.D., Kostara, C.E., Papakonstantinou, E.J., Salamou, E. and Guzman, E. (2023) Insulin Resistance and Cardiovascular Disease. Journal of International Medi-cal Research, 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ormazabal, V., Nair, S., Elfeky, O., et al. (2018) Association between Insulin Resistance and the Development of Cardiovascular Disease. Cardiovascular Diabetology, 17, Article No. 122. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
李莎, 熊峰. 胰岛素抵抗与心血管疾病研究进展[J]. 心血管病学进展, 2019, 40(9): 1307-1311. [Google Scholar] [CrossRef]
|
|
[7]
|
Samuel, V.T. and Shulman, G.I. (2012) Mecha-nisms for Insulin Resistance: Common Threads and Missing Links. Cell, 148, 852-871. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hill, M.A., Yang, Y., Zhang, L., Sun, Z., Jia, G., Parrish, A.R. and Sowers, J.R. (2021) Insulin Resistance, Cardiovascular Stiffening and Cardiovascular Disease. Metabolism, 119, Article ID: 154766. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jia, G., Whaley-Connell, A. and Sowers, J.R. (2018) Diabetic Cardiomyopathy: A Hyperglycaemia- and Insulin-Resistance-Induced Heart Disease. Diabetologia, 61, 21-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Riehle, C. and Abel, E.D. (2016) Insulin Signaling and Heart Failure. Circulation Research, 118, 1151-1169. [Google Scholar] [CrossRef]
|
|
[11]
|
Shah, A. and Shannon, R.P. (2003) Insulin Resistance in Dilated Cardiomyopathy. Reviews in Cardiovascular Medicine, 4, S50-S57.
|
|
[12]
|
Nikolaidis, L.A., Sturzu, A., Stolarski, C., Elahi, D., Shen, Y.T. and Shannon, R.P. (2004) The Development of Myocardial Insulin Resistance in Conscious Dogs with Advanced Dilated Cardiomyopathy. Cardiovascular Research, 61, 297-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Dávila-Román, V.G., Vedala, G., Herrero, P., de las Fuentes, L., Rogers, J.G., Kelly, D.P., et al. (2002) Altered Myocardial Fatty Acid and Glucose Metabolism in Idiopathic Dilated Cardiomyopathy. Journal of the American College of Cardiology, 40, 271-277. [Google Scholar] [CrossRef]
|
|
[14]
|
Neglia, D., De Caterina, A., Marraccini, P., Natali, A., Ciardetti, M., Vecoli, C., et al. (2007) Impaired Myocardial Metabolic Reserve and Substrate Selection Flexibility during Stress in Patients with Idiopathic Dilated Cardiomyopathy. American Journal of Physiology-Heart and Circulatory Physiology, 293, H3270-H3278. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tuunanen, H., Engblom, E., Naum, A., Scheinin, M., Någren, K., Airaksinen, J., et al. (2006) Decreased Myocardial Free Fatty Acid Uptake in Patients with Idiopathic Dilated Cardiomy-opathy: Evidence of Relationship with Insulin Resistance and Left Ventricular Dysfunction. Journal of Cardiac Failure, 12, 644-652. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Velez, M., Kohli, S. and Sabbah, H.N. (2014) Animal Models of Insulin Resistance and Heart Failure. Heart Failure Reviews, 19, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hill, M.A., Jaisser, F. and Sowers, J.R. (2022) Role of the Vas-cular Endothelial Sodium Channel Activation in the Genesis of Pathologically Increased Cardiovascular Stiffness. Cardi-ovascular Research, 118, 130-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hong, Z., Sun, Z., Li, M., Li, Z., Bunyak, F., Ersoy, I., Trzeciakowski, J.P., Staiculescu, M.C., Jin, M., Martinez-Lemus, L., Hill, M.A., Palaniappan, K. and Meininger, G.A. (2014) Vasoac-tive Agonists Exert Dynamic and Coordinated Effects on Vascular Smooth Muscle Cell Elasticity, Cytoskeletal Remodel-ling and Adhesion. The Journal of Physiology, 592, 1249-1266. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kleyman, T.R., Kashlan, O.B. and Hughey, R.P. (2018) Epithe-lial Na+ Channel Regulation by Extracellular and Intracellular Factors. Annual Review of Physiology, 80, 263-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Pearce, D., Soundararajan, R., Trimpert, C., Kashlan, O.B., Deen, P.M. and Kohan, D.E. (2015) Collecting Duct Principal Cell Transport Processes and Their Regulation. Clinical Journal of the American Society of Nephrology, 10, 135-146. [Google Scholar] [CrossRef]
|
|
[21]
|
Blazer-Yost, B.L., Esterman, M.A. and Vlahos, C.J. (2003) Insu-lin-Stimulated Trafficking of ENaC in Renal Cells Requires PI 3-Kinase Activity. American Journal of Physiology-Cell Physiology, 284, C1645-C1653. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jia, G., Habibi, J., Aroor, A.R., Hill, M.A., DeMarco, V.G., Lee, L.E., Ma, L., Barron, B.J., Whaley-Connell, A. and Sowers, J.R. (2018) Enhanced Endothelium Epithelial Sodium Channel Signaling Prompts Left Ventricular Diastolic Dysfunction in Obese Female Mice. Metabolism, 78, 69-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Jia, G., Habibi, J., Aroor, A.R., Martinez-Lemus, L.A., De-Marco, V.G., Ramirez-Perez, F.I., Sun, Z., Hayden, M.R., Meininger, G.A., Mueller, K.B., Jaffe, I.Z. and Sowers, J.R. (2016) Endothelial Mineralocorticoid Receptor Mediates Diet-Induced Aortic Stiffness in Females. Circulation Research, 118, 935-943. [Google Scholar] [CrossRef]
|
|
[24]
|
Sowers, J.R., Habibi, J., Aroor, A.R., Yang, Y., Lastra, G., Hill, M.A., Whaley-Connell, A., Jaisser, F. and Jia, G. (2019) Epithelial Sodium Channels in Endothelial Cells Medi-ate Diet-Induced Endothelium Stiffness and Impaired Vascular Relaxation in Obese Female Mice. Metabolism, 99, 57-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Drummond, H.A., Grifoni, S.C. and Jernigan, N.L. (2008) A New Trick for an Old Dogma: ENaC Proteins as Mechanotransducers in Vascular Smooth Muscle. Physiology, 23, 23-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jia, G., Habibi, J., Aroor, A.R., Hill, M.A., Yang, Y., Whaley-Connell, A., Jaisser, F. and Sowers, J.R. (2018) Epithelial Sodium Channel in Aldosterone-Induced Endothelium Stiffness and Aortic Dysfunction. Hypertension, 72, 731-738. [Google Scholar] [CrossRef]
|
|
[27]
|
Fels, J., Jeggle, P., Liashkovich, I., Peters, W. and Oberleithner, H. (2014) Nanomechanics of Vascular Endothelium. Cell and Tissue Research, 355, 727-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Fang, Z.Y., Prins, J.B. and Marwick, T.H. (2004) Diabetic Car-diomyopathy: Evidence, Mechanisms, and Therapeutic Implications. Endocrine Reviews, 25, 543-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jia, G., DeMarco, V.G. and Sowers, J.R. (2016) Insulin Resistance and Hyperinsulinaemia in Diabetic Cardiomyopathy. Nature Reviews Endocrinology, 12, 144-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Mandavia, C.H., Aroor, A.R., Demarco, V.G. and Sowers, J.R. (2013) Molecular and Metabolic Mechanisms of Cardiac Dysfunction in Diabetes. Life Sciences, 92, 601-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Vincent, M.A., Clerk, L.H., Lindner, J.R., Klibanov, A.L., Clark, M.G., Rattigan, S. and Barrett, E.J. (2004) Microvascular Recruitment Is an Early Insulin Effect That Regulates Skeletal Muscle Glucose Uptake in Vivo. Diabetes, 53, 1418-1423. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Paolillo, S., Rengo, G., Pellegrino, T., Formisano, R., Pagano, G., Gargiulo, P., Savarese, G., Carotenuto, R., Petraglia, L., Ra-pacciuolo, A., Perrino, C., Piscitelli, S., Attena, E., Del Guercio, L., Leosco, D., Trimarco, B., Cuocolo, A. and Perro-ne-Filardi, P. (2015) Insulin Resistance Is Associated with Impaired Cardiac Sympathetic Innervation in Patients with Heart Failure. European Heart Journal-Cardiovascular Imaging, 16, 1148-1153. [Google Scholar] [CrossRef] [PubMed]
|