[1]
|
翟萌, 姜惠芬. 新冠病毒肺炎COVID-19的传播途径及预防和防护[J]. 基因组学与应用生物学, 2020, 39(10): 4895-4898.
|
[2]
|
国家消化内镜专业质控中心, 中国医师协会内镜医师分会, 中华医学会消化内镜学分会. 新型冠状病毒肺炎疫情防控期间ERCP诊疗专家共识[J]. 中华实验外科杂志, 2020(9): 393-398.
|
[3]
|
刘蓬然, 等. 人工智能技术在抗击新型冠状病毒肺炎疫情中的应用进展[J]. 中华全科医师杂志, 2022, 21(6): 567-572.
|
[4]
|
叶鸣昱, 曹华. 新型冠状病毒感染与皮肌炎在皮肤、肺部表现的异同点[J]. 临床内科杂志, 2023, 40(3): 159-162.
|
[5]
|
程诚, 等. 新型冠状病毒肺炎确诊患者首发临床症状分析[J]. 郑州大学学报(医学版), 2022, 57(6): 788-791.
|
[6]
|
傅小云, 等. 浅析新型冠状病毒肺炎并发急性呼吸窘迫综合征的病理及病理生理[J]. 中国呼吸与危重监护杂志, 2022, 21(10): 756-760.
|
[7]
|
Ozder, A. (2020) A Novel Indicator Predicts 2019 Novel Coronavirus Infection in Subjects with Diabetes. Diabetes Research, Clinical Practice, 166, Article ID: 108294. https://doi.org/10.1016/j.diabres.2020.108294
|
[8]
|
Soltani, J. (2020) Pediatric Coronavirus Disease 2019 (COVID-19): An Insight from West of Iran. Northern Clinics of Istanbul, 7, 284-291.
|
[9]
|
Wu, A.J., et al. (2023) De-tection of COVID-19 Pulmonary Manifestations with Radiotherapy Simulation CT Imaging. Clinical Imaging, 93, 83-85. https://doi.org/10.1016/j.clinimag.2022.11.008
|
[10]
|
Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P. and Ji, W. (2020) Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology, 296, E115-E117. https://doi.org/10.1148/radiol.2020200432
|
[11]
|
Lei, J., Li. J., Li, X. and Qi, X. (2020) CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology, 295, 18. https://doi.org/10.1148/radiol.2020200236
|
[12]
|
熊永江, 等. 16例COVID-19患者的影像回顾[J]. 中国研究型医院, 2020, 7(2): 36-40.
|
[13]
|
Shi, H., et al. (2020) Radiological Findings from 81 Patients with COVID-19 Pneumonia in Wuhan, China: A Descriptive Study. The Lancet Infectious Diseases, 20, 425-434. https://doi.org/10.1016/S1473-3099(20)30086-4
|
[14]
|
陈静, 等. 定量CT评估新型冠状病毒肺炎患者肺部改变的可行性分析[J]. 中国CT和MRI杂志, 2022, 20(10): 28-30.
|
[15]
|
黄文鹏, 等. 双源双能量CT成像在新型冠状病毒肺炎中的应用价值[J]. 中华消化病与影像杂志(电子版), 2022, 12(4): 198-203.
|
[16]
|
杨柳青. 人工智能在数字缩微建设中的应用[J]. 农业图书情报学报, 2020, 32(4): 59-67.
|
[17]
|
王娜娜, 等. 人工智能辅助诊断系统在COVID-19患者病程变化中的诊疗作用[J]. 中国医疗设备, 2022, 37(8): 37-41+65.
|
[18]
|
Babu, C., Rahul, M.O. and Chandy, D. (2022) Deep Learning Based COVID-19 Detection Using Medical Images: Is Insufficient Data Handled Well? Current Medical Imaging, 19, 307-311.
https://doi.org/10.2174/1573405618666220803123626
|
[19]
|
黄晓旗, 等. 基于AI定量检测新型冠状病毒肺炎胸部CT演变特征分析[J]. 中国CT和MRI杂志, 2022, 20(11): 55-57.
|
[20]
|
孙书魁, 等. 人工智能在新型冠状病毒肺炎中的研究综述[J]. 计算机工程与应用, 2023, 59(5): 28-39.
|
[21]
|
张淙越, 杨晓玲. 基于卷积神经网络的新冠肺炎CT图像识别系统[J]. 电脑与信息技术, 2022, 30(3): 12-14+40.
|
[22]
|
Joshi, T., et al. (2020) Predictive Mod-eling by Deep Learning, Virtual Screening and Molecular Dynamics Study of Natural Compounds against SARS-CoV-2 Main Protease. Journal of Biomolecular Structure and Dynamics, 39, 6728-6746. https://doi.org/10.1080/07391102.2020.1802341
|
[23]
|
刘勇彬, 等. 多发磨玻璃影为主要表现的COVID-19患者CT及临床特征分析[J]. CT理论与应用研究, 2020, 29(3): 289-294.
|
[24]
|
吴姗姗, 等. 新型冠状病毒肺炎的临床表现及CT影像学特点[J]. 中国CT和MRI杂志, 2022, 20(6): 71-73.
|
[25]
|
苗强, 等. COVID-19肺部CT影像学表现[J]. 徐州医科大学学报, 2021, 41(4): 306-309.
|
[26]
|
唐茂文, 等. 新冠肺炎(COVID-19)临床信息及胸部CT影像表现的初步探讨及文献复习[J]. 中国CT和MRI杂志, 2023, 21(1): 56-59.
|
[27]
|
蔡冠晖, 等. 新型冠状病毒肺炎胸部高分辨率CT影像分期与鉴别[J]. 医学影像学杂志, 2020, 30(8): 1380-1383.
|
[28]
|
陈志勇, 等. 新型冠状病毒肺炎的临床表现及CT影像学特点[J]. 放射学实践, 2020, 35(3): 286-290.
|
[29]
|
马琼, 等. 新型冠状病毒肺炎临床及影像学研究进展[J]. 中国临床医学, 2020, 27(1): 23-26.
|
[30]
|
张晓彤, 余延辉, 陈延. 3例心源性肺水肿误诊为新型冠状病毒肺炎的影像学表现分析[J]. 中国中西医结合影像学杂志, 2022, 20(1): 53-55+80.
|
[31]
|
郑敬, 等. COVID-19患者康复早期临床特征、肺功能及影像学随访[J]. 解放军医学院学报, 2021, 42(4): 368-371+406.
|
[32]
|
沈晶, 等. COVID-19患者胸部CT表现特点及其演变规律[J]. CT理论与应用研究, 2021, 30(2): 199-207.
|
[33]
|
向容, 刘翔雏, 吴勇. 新型冠状病毒肺炎的CT表现[J]. 中国CT和MRI杂志, 2022, 20(7): 70-72.
|
[34]
|
萧毅, 刘士远. 人工智能技术在新型冠状病毒肺炎诊治中的应用及价值[J]. 中国医学影像学杂志, 2021, 29(4): 289-292.
|
[35]
|
Ghashghaei, S., et al. (2022) Grayscale Image Statistics of COVID-19 Patient CT Scans Characterize Lung Condition with Machine and Deep Learning. Chronic Diseases and Translational Medicine, 8, 191-206.
https://doi.org/10.1002/cdt3.27
|
[36]
|
Neri, E., Miele, V., Coppola, F. and Grassi, R. (2020) Use of CT and Artificial Intelligence in Suspected or COVID-19 Positive Patients: Statement of the Italian Society of Medical and Interventional Radiology. La Radiologia Medica, 125, 505-508. https://doi.org/10.1007/s11547-020-01197-9
|
[37]
|
Song, Y., et al. (2021) Deep Learning Enables Accurate Diagnosis of Novel Coronavirus (COVID-19) with CT Images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18, 2775-2780.
https://doi.org/10.1109/TCBB.2021.3065361
|
[38]
|
Wang, B., et al. (2021) AI-Assisted CT Imaging Analysis for COVID-19 Screening: Building and Deploying a Medical AI System. Applied Soft Computing, 98, Article ID: 106897. https://doi.org/10.1016/j.asoc.2020.106897
|
[39]
|
Kassania, S.H., et al. (2021) Automatic Detection of Coronavirus Disease (COVID-19) in X-Ray and CT Images: A Machine Learning Based Approach. Biocybernetics and Biomedical Engineering, 41, 867-879.
https://doi.org/10.1016/j.bbe.2021.05.013
|
[40]
|
Mukherjee, H., et al. (2020) Deep Neural Network to Detect COVID-19: One Architecture for Both CT Scans and Chest X-Rays. Applied Intelligence, 51, 2777-2789. https://doi.org/10.1007/s10489-020-01943-6
|
[41]
|
Biraja Ghoshal, A.T. (2020) Estimating Uncertainty and Inter-pretability in Deep Learning for Coronavirus (COVID-19) Detection. (Preprint)
|
[42]
|
Chen, J., et al. (2020) Deep learn-ing-Based Model for Detecting 2019 Novel Coronavirus Pneumonia on High-Resolution Computed Tomography. Scien-tific Reports, 10, Article No. 19196. https://doi.org/10.1038/s41598-020-76282-0
|
[43]
|
Zheng, C., et al. (2020) Deep Learning-Based Detection for COVID-19 from Chest CT Using Weak Label. IEEE Transactions on Medical Im-aging. (Preprint) https://doi.org/10.1101/2020.03.12.20027185
|
[44]
|
Shi, F., et al. (2021) Large-Scale Screening to Distinguish between COVID-19 and Community-Acquired Pneumonia Using Infection Size-Aware Classification. Physics in Medicine & Biology, 66, Article ID: 065031.
https://doi.org/10.1088/1361-6560/abe838
|
[45]
|
黄益龙, 等. CT影像组学联合征象鉴别新型冠状病毒肺炎与其他病毒性肺炎的价值[J]. 中华放射学杂志, 2022, 56(1): 36-42.
|
[46]
|
吴清, 等. 疑似COVID-19的阴性患者影像学鉴别诊断[J]. 现代医药卫生, 2021, 37(9): 1532-1534.
|
[47]
|
耿国军, 等. COVID-19与早期肺癌磨玻璃样变的HRCT影像特征对比分析[J]. 中华胸心血管外科杂志, 2020, 36(7): 393-396.
|
[48]
|
刘发明, 等. 新型冠状病毒肺炎的影像组学研究[J]. 中国医学物理学杂志, 2020, 37(4): 463-467.
|
[49]
|
张振华, 等. 基于AI技术的新型冠状病毒肺炎CT影像特点分析[J]. 医疗卫生装备, 2020, 41(5): 6-8+27.
|
[50]
|
钟琦, 等. CT影像组学对鉴别COVID-19和甲型H1N1流感的应用研究[J]. 临床放射学杂志, 2021, 40(10): 1939-1943.
|
[51]
|
蔡承伦, 杨云龙. 影像组学在肺肿瘤领域中的研究进展[J]. 肿瘤研究与临床, 2022, 34(7): 557-560.
|
[52]
|
Ge, C., et al. (2022) COVID-19 Imag-ing-Based AI Research—A Literature Review. Current Medical Imaging, 18, 496-508. https://doi.org/10.2174/1573405617666210902103729
|
[53]
|
Mei, X., et al. (2020) Artificial Intelligence-Enabled Rapid Diagnosis of Patients with COVID-19. Nature Medicine, 26, 1224-1228. https://doi.org/10.1038/s41591-020-0931-3
|
[54]
|
汪靖婷, 等. 基于临床及CT影像组学特征构建周围型小细胞肺癌与肺腺癌诊断模型的研究[J]. 临床放射学杂志, 2023, 42(3): 406-410.
|
[55]
|
Wang, S., et al. (2021) A Deep Learning Algorithm Using CT Images to Screen for Corona Virus Disease (COVID-19). European Radiology, 31, 6096-6104. https://doi.org/10.1007/s00330-021-07715-1
|
[56]
|
Apostolopoulos, I.D. and Mpesiana, T.A. (2020) Covid-19: Automatic Detection from X-Ray Images Utilizing Transfer Learning with Convolutional Neural Networks. Physical and Engineering Sciences in Medicine, 43, 635-640.
https://doi.org/10.1007/s13246-020-00865-4
|
[57]
|
Wang, L., Lin, Z.Q. and Wong, A. (2020) COVID-Net: A Tai-lored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray Images. Scien-tific Reports, 10, Article No. 19549.
https://doi.org/10.1007/s13246-020-00865-4
|
[58]
|
Zhang, K., et al. (2020) Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomogra-phy. Cell, 181, 1423-1433.
https://doi.org/10.1016/j.cell.2020.04.045
|
[59]
|
Xu, X., et al. (2020) A Deep Learning System to Screen Novel Coronavirus Disease 2019 Pneumonia. Engineering, 6, 1122-1129. https://doi.org/10.1016/j.eng.2020.04.010
|
[60]
|
Jin, C., et al. (2020) Development and Evaluation of an Artificial Intelligence System for COVID-19 Diagnosis. Nature Communications, 11, Article No. 5088. https://doi.org/10.1038/s41467-020-18685-1
|
[61]
|
Chung, M., et al. (2020) CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology, 295, 202-207.
https://doi.org/10.1148/radiol.2020200230
|
[62]
|
Bernheim, A., et al. (2020) Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology, 295, 685-691. https://doi.org/10.1148/radiol.2020200463
|
[63]
|
Bai, H.X., et al. (2020) Performance of Radiologists in Differenti-ating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology, 296, E46-E54. https://doi.org/10.1148/radiol.2020200823
|
[64]
|
詹朝土, Boitshepo, G.T. 重型或危重型新型冠状病毒肺炎46例高分辨率CT征象分析[J]. 中国现代医药杂志, 2022, 24(12): 31-35.
|
[65]
|
苏祝平, 等. 基于CT影像特征预测COVID-19患者肺部病变进展[J]. 中山大学学报(医学科学版), 2023, 44(2): 286-294.
|
[66]
|
Gou, Q., et al. (2021) Stent Placement Combined with Intraluminal Radiofrequency Ablation and Hepatic Arterial Infusion Chemotherapy for Advanced Biliary Tract Cancers with Biliary Obstruction: A Multicentre, Retrospective, Controlled Study. European Ra-diology, 31, 5851-5862. https://doi.org/10.1007/s00330-021-07716-0
|
[67]
|
沈杰, 等. AI自动定位技术在新型冠状病毒肺炎胸部CT检查中的应用[J]. 中国医疗设备, 2020, 35(10): 106-109.
|
[68]
|
邓莉萍, 等. 智能定位CT在新型冠状病毒肺炎筛查中的可行性研究[J]. 中国医疗设备, 2020, 35(6): 49-53+74.
|
[69]
|
刘力, 陈宏, 钟威, 等. 人工智能CT定量分析预测并评估COVID-19肺炎临床分型的研究[J]. CT理论与应用研究, 2021, 30(6): 743-751.
|
[70]
|
Huang, L., et al. (2020) Serial Quantitative Chest CT Assessment of COVID-19: A Deep Learning Ap-proach. Radiology: Cardiothoracic Imaging, 2, 1-8. https://doi.org/10.1148/ryct.2020200075
|
[71]
|
赵建华, 等. 基于深度学习的新型冠状病毒肺炎转归胸部CT评价[J]. 国际放射医学核医学杂志, 2020(12): 737-743.
|
[72]
|
Yu, Q., et al. (2020) Multicenter Cohort Study Demonstrates More Consolidation in Upper Lungs on Initial CT Increases the Risk of Adverse Clinical Outcome in COVID-19 Patients. Theranostics, 10, 5641-5648.
https://doi.org/10.7150/thno.46465
|
[73]
|
Mushtaq, J., et al. (2020) Initial Chest Radiographs and Artificial Intelli-gence (AI) Predict Clinical Outcomes in COVID-19 Patients: Analysis of 697 Italian Patients. European Radiology, 31, 1770-1779.
https://doi.org/10.1007/s00330-020-07269-8
|
[74]
|
Yue, H., et al. (2020) Machine Learning-Based CT Radiomics Method for Predicting Hospital Stay in Patients with Pneumonia Associated with SARS-CoV-2 Infection: A Multicenter Study. Annals of Translational Medicine, 8, 859-859. https://doi.org/10.21037/atm-20-3026
|