|
[1]
|
Riazi, K., Azhari, H., Charette, J.H., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861. [Google Scholar] [CrossRef]
|
|
[2]
|
Burra, P., Bizzaro, D., Gonta, A., et al. (2021) Clinical Im-pact of Sexual Dimorphism in Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH). Liver International: Official Journal of the International Association for the Study of the Liver, 41, 1713-1733. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Tanase, D.M., Gosav, E.M., Costea, C.F., et al. (2020) The Intricate Rela-tionship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). Journal of Diabetes Research, 2020, Article ID: 3920196. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Dresner, A., Laurent, D., Marcucci, M., et al. (1999) Effects of Free Fatty Acids on Glucose Transport and IRS-1-Associated Phosphatidylinositol 3-Kinase Activity. The Journal of Clinical Investigation, 103, 253-259. [Google Scholar] [CrossRef]
|
|
[5]
|
Drucker, D.J. (2018) Mechanisms of Action and Therapeutic Application of Glucagon-Like Peptide-1. Cell Metabolism, 27, 740-756. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Davies, M.J., Aroda, V.R., Collins, B.S., et al. (2022) Management of Hyperglycaemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 65, 1925-1966. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zhang, Y.F., Jiang, L., Wang, J.H., et al. (2022) Network Meta-Analysis on the Effects of Finerenone versus SGLT2 Inhibitors and GLP-1 Receptor Ago-nists on Cardiovascular and Renal Outcomes in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease. Cardiovascular Diabetology, 21, Article No. 232. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Jensterle, M., Rizzo, M., Haluzík, M., et al. (2022) Efficacy of GLP-1 RA Approved for Weight Management in Patients with or without Diabetes: A Narrative Review. Advances in Therapy, 39, 2452-2467. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Del Prato, S., Gallwitz, B., Holst, J.J., et al. (2021) The In-cretin/Glucagon System as a Target for Pharmacotherapy of Obesity. Obesity Reviews: An Official Journal of the Interna-tional Association for the Study of Obesity, 23, e13372. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Campbell, J.E. and Drucker, D.J. (2013) Pharmacology, Physiology, and Mechanisms of Incretin Hormone Action. Cell Metabolism, 17, 819-837. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Rajeev, S.P. and Wilding, J. (2016) GLP-1 as a Target for Thera-peutic Intervention. Current Opinion in Pharmacology, 31, 44-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Salvatore, T., Nevola, R., Pafundi, P.C., et al. (2019) Incretin Hormones: The Link between Glycemic Index and Cardiometabolic Diseases. Nutrients, 11, Article No. 1878. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Blundell, J., Finlayson, G., Axelsen, M., et al. (2017) Effects of Once-Weekly Semaglutide on Appetite, Energy Intake, Control of Eating, Food Preference and Body Weight in Subjects with Obesity. Diabetes, Obesity & Metabolism, 19, 1242-1251. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rubino, D.M., Greenway, F.L., Khalid, U., et al. (2022) Effect of Weekly Subcutaneous Semaglutide vs Daily Liraglutide on Body Weight in Adults with Overweight or Obesity without Diabetes: The STEP 8 Randomized Clinical Trial. JAMA, 327, 138-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yan, J.H., Yao, B., Kuang, H.Y., et al. (2019) Lirag-lutide, Sitagliptin, and Insulin Glargine Added to Metformin: The Effect on Body Weight and Intrahepatic Lipid in Pa-tients with Type 2 Diabetes Mellitus and Nonalcoholic Fatty Liver Disease. Hepatology, 69, 2414-2426. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Van Bloemendaal, L., Veltman, D.J., Ten Kulve, J.S., et al. (2015) Brain Reward-System Activation in Response to Anticipation and Consumption of Palatable Food Is Altered by Glucagon-Like Peptide-1 Receptor Activation in Humans. Diabetes, Obesity & Metabolism, 17, 878-886. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Nonogaki, K. and Kaji, T. (2018) Liraglutide, a GLP-1 Receptor Agonist, Which Decreases Hypothalamic 5-HT2A Receptor Expression, Reduces Appetite and Body Weight Independently of Serotonin Synthesis in Mice. Journal of Diabetes Research, 2018, Article ID: 6482958. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Nonogaki, K. and Kaji, T. (2016) The Acute Anorexic Effect of Lirag-lutide, a GLP-1 Receptor Agonist, Does Not Require Functional Leptin Receptor, Serotonin, and Hypothalamic POMC and CART Activities in Mice. Diabetes Research and Clinical Practice, 120, 186-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Halawi, H., Khemani, D., Eckert, D., et al. (2017) Effects of Li-raglutide on Weight, Satiation, and Gastric Functions in Obesity: A Randomised, Placebo-Controlled Pilot Trial. The Lancet Gastroenterology & Hepatology, 2, 890-899. [Google Scholar] [CrossRef]
|
|
[20]
|
Umapathysivam, M.M., Lee, M.Y., Jones, K.L., et al. (2013) Comparative Effects of Prolonged and Intermittent Stimulation of the Glucagon-Like Peptide 1 Receptor on Gastric Emptying and Glycemia. Diabetes, 63, 785-790. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ekstedt, M., Franzén, L.-E., Mathiesen, U.-L., et al. (2006) Long-Term Follow-Up of Patients with NAFLD and Elevated Liver Enzymes. Hepatology (Baltimore, Md.), 44, 865-873. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Neuschwander-Tetri, B.A., Loomba, R., Sanyal, A.J., et al. (2014) Far-nesoid X Nuclear Receptor Ligand Obeticholic Acid for Non-Cirrhotic, Non-Alcoholic Steatohepatitis (FLINT): A Mul-ticentre, Randomised, Placebo-Controlled Trial. The Lancet (London, England), 385, 956-965. [Google Scholar] [CrossRef]
|
|
[23]
|
Vilar-Gomez, E., Calzadilla-Bertot, L., Friedman, S.L., et al. (2017) Serum Biomarkers Can Predict A Change in Liver Fibrosis 1 Year after Lifestyle Intervention for Biopsy-Proven NASH. Liver International: Official Journal of the International Association for the Study of the Liver, 37, 1887-1896. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Vilar-Gomez, E., Martinez-Perez, Y., Calzadilla-Bertot, L., et al. (2015) Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroen-terology, 149, 367-378.e5. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Fan, H., Pan, Q.R., Xu, Y., et al. (2013) Exenatide Improves Type 2 Diabetes Concomitant with Non-Alcoholic Fatty Liver Disease. Arquivos Brasileiros de Endocrinologia e Metabologia, 57, 702-708. [Google Scholar] [CrossRef]
|
|
[26]
|
Dutour, A., Abdesselam, I., Ancel, P., et al. (2016) Ex-enatide Decreases Liver Fat Content and Epicardial Adipose Tissue in Patients with Obesity and Type 2 Diabetes: A Prospective Randomized Clinical Trial Using Magnetic Resonance Imaging and Spectroscopy. Diabetes, Obesity & Me-tabolism, 18, 882-891. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Blaslov, K., Zibar, K., Bulum, T., et al. (2013) Ef-fect of Exenatide Therapy on Hepatic Fat Quantity and Hepatic Biomarkers in Type 2 Diabetic Patients. Clinics and Re-search in Hepatology and Gastroenterology, 38, e61-e63. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Vanderheiden, A., Harrison, L.-B., Warshauer, J.-T., et al. (2016) Mechanisms of Action of Liraglutide in Patients with Type 2 Diabetes Treated with High-Dose Insulin. The Journal of Clinical Endocrinology and Metabolism, 101, 1798-1806. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Jean-Michel, P., Jean-Pierre, C., Romaric, L., et al. (2017) Effect of Li-raglutide Therapy on Liver Fat Content in Patients with Inadequately Controlled Type 2 Diabetes: The Lira-NAFLD Study. The Journal of Clinical Endocrinology & Metabolism, 102, 407-415.
|
|
[30]
|
Angulo, P., Kleiner, D.E., Dam-Larsen, S., et al. (2015) Liver Fibrosis, but No Other Histologic Features, Is Associated with Long-Term Outcomes of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology, 149, 389-397.e10. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Romina, L., Eddison-Godinez, L., Fernando, B., et al. (2020) Advanced Liver Fibrosis Is Common in Patients with Type 2 Diabetes Followed in the Outpatient Setting: The Need for Systematic Screening. Diabetes Care, 44, 399-406. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Newsome, P.-N., Buchholtz, K., Cusi, K., et al. (2020) A Place-bo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. The New England Journal of Medicine, 42, 1113-1124. [Google Scholar] [CrossRef]
|
|
[33]
|
Tan, Y.J., Zhen, Q., Ding, X.Y., et al. (2022) Association between Use of Liraglutide and Liver Fibrosis in Patients with Type 2 Diabetes. Frontiers in Endocrinology, 2022, Article ID: 935180. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Mells, J.-E., Fu, P.-P., Sharma, S., et al. (2011) Glp-1 Analog, Liraglutide, Ameliorates Hepatic Steatosis and Cardiac Hypertrophy in C57BL/6J Mice Fed a Western Diet. American Journal of Physiology. Gastrointestinal and Liver Physiology, 302, G225-G235. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Piro, S., Spadaro, L., Russello, M., et al. (2007) Molecular Deter-minants of Insulin Resistance, Cell Apoptosis and Lipid Accumulation in Non-Alcoholic Steatohepatitis. Nutrition, Me-tabolism, and Cardiovascular Diseases: NMCD, 18, 545-552. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Gupta, N.-A., Mells, J., Dunham, R.-M., et al. (2010) Gluca-gon-Like Peptide-1 Receptor Is Present on Human Hepatocytes and Has a Direct Role in Decreasing Hepatic Steatosis in Vitro by Modulating Elements of the Insulin Signaling Pathway. Hepatology (Baltimore, Md.), 51, 1584-1592. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yadav, A., Kataria, M.-A., Saini, V., et al. (2012) Role of Leptin and Adi-ponectin in Insulin Resistance. Clinica Chimica Acta, 417, 80-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Savvidou, S., Karatzidou, K., Tsakiri, K., et al. (2016) Circulating Adiponectin Levels in Type 2 Diabetes Mellitus Patients with or without Non-Alcoholic Fatty Liver Disease: Results of a Small, Open-Label, Randomized Controlled Intervention Trial in a Subgroup Receiving Short-Term Exenatide. Diabetes Research and Clinical Practice, 113, 125-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Handy, J.-A., Fu, P.-P., Kumar, P., et al. (2011) Adiponectin Inhibits Leptin Signalling via Multiple Mechanisms to Exert Protective Effects against Hepatic Fibrosis. The Biochemical Journal, 440, 385-395. [Google Scholar] [CrossRef]
|
|
[40]
|
Ben-Shlomo, S., Zvibel, I., Shnell, M., et al. (2010) Glucagon-Like Pep-tide-1 Reduces Hepatic Lipogenesis via Activation of AMP-Activated Protein Kinase. Journal of Hepatology, 54, 1214-1223. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Panzitt, K. and Wagner, M. (2021) FXR in Liver Physiology: Mul-tiple Faces to Regulate Liver Metabolism. Biochimica et Biophysica Acta, 1867, Article ID: 166133. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Errafii, K., Khalifa, O., Al-akl, N.S., et al. (2022) Comparative Transcriptome Analysis Reveals That Exendin-4 Improves Steatosis in HepG2 Cells by Modulating Signaling Pathways Related to Lipid Metabolism. Biomedicines, 10, Article No. 1020. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Gao, Q., Jia, Y.Z., Yang, G.S., et al. (2015) PPARα-Deficient ob/ob Obese Mice Become More Obese and Manifest Severe Hepatic Steatosis Due to Decreased Fatty Acid Oxidation. The American Journal of Pathology, 185, 1396-1408. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Jadhav, K., Xu, Y., Xu, Y.Y., et al. (2018) Reversal of Metabolic Disorders by Pharmacological Activation of Bile Acid Receptors TGR5 and FXR. Molecular Metabolism, 9, 131-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ma, Y.J., Huang, Y.X., Yan, L.N., et al. (2013) Synthetic FXR Agonist GW4064 Prevents Diet-Induced Hepatic Steatosis and Insulin Resistance. Pharmaceutical Research, 30, 1447-1457. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Pettinelli, P. and Videla, L.A. (2011) Up-Regulation of PPAR-Gamma mRNA Expression in the Liver of Obese Patients: An Additional Reinforcing Lipogenic Mechanism to SREBP-1c Induction. The Journal of Clinical Endocrinology and Metabolism, 96, 1424-1430. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Decara, J., Arrabal, S., Beiroa, D., et al. (2016) Antiobesity Efficacy of GLP-1 Receptor Agonist Liraglutide Is Associated with Peripheral Tissue-Specific Modulation of Lipid Metabolic Regu-lators. Biofactors (Oxford, England), 42, 600-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Seo, M.-H., Lee, J., Hong, S.-W., et al. (2016) Exendin-4 Inhibits Hepatic Lipogenesis by Increasing β-Catenin Signaling. PLOS ONE, 11, e0166913. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Sharma, S., Mells, J.E., Fu, P.P., et al. (2011) GLP-1 Analogs Reduce Hepatocyte Steatosis and Improve Survival by Enhancing the Unfolded Protein Response and Promoting Macroautophagy. PLOS ONE, 6, e25269. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Rahman, K., Liu, Y.S., Kumar, P., et al. (2016) C/EBP Homol-ogous Protein Modulates Liraglutide-Mediated Attenuation of Non-Alcoholic Steatohepatitis. Laboratory Investigation: A Journal of Technical Methods and Pathology, 96, 895-908. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Derosa, G., Franzetti, I.-G., Querci, F., et al. (2012) Exenatide plus Metformin Compared with Metformin Alone on β-Cell Func-tion in Patients with Type 2 Diabetes. Diabetic Medicine, 29, 1515-1523. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Wei, H., Bu, R., Yang, Q.H., et al. (2019) Exendin-4 Pro-tects against Hyperglycemia-Induced Cardiomyocyte Pyroptosis via the AMPK-TXNIP Pathway. Journal of Diabetes Research, 2019, Article ID: 8905917. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lee, Y.-S., Park, M.-S., Choung, J.-S., et al. (2012) Glucagon-Like Peptide-1 Inhibits Adipose Tissue Macrophage Infiltration and Inflammation in an Obese Mouse Model of Diabetes. Di-abetologia, 55, 2456-2468. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Lee, Y.-S. and Jun, H.-S. (2016) Anti-Inflammatory Effects of GLP-1-Based Therapies beyond Glucose Control. Mediators of Inflammation, 2016, Article ID: 3094642. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Ren, Q.J., Chen, S.C., Chen, X., et al. (2022) An Effective Gluca-gon-Like Peptide-1 Receptor Agonists, Semaglutide, Improves Sarcopenic Obesity in Obese Mice by Modulating Skele-tal Muscle Metabolism. Drug Design, Development and Therapy, 16, 3723-3735. [Google Scholar] [CrossRef]
|
|
[56]
|
Hong, Y., Lee, J.H., Jeong, K.W., et al. (2019) Amelioration of Muscle Wasting by Glucagon-Like Peptide-1 Receptor Agonist in Muscle Atrophy. Journal of Cachexia, Sarcopenia and Muscle, 10, 903-918. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Kamiya, M., Mizoguchi, F. and Yasuda, S. (2022) Amelioration of In-flammatory Myopathies by Glucagon-Like Peptide-1 Receptor Agonist via Suppressing Muscle Fibre Necroptosis. Journal of Cachexia, Sarcopenia and Muscle, 13, 2118-2131. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Gallwitz, B. (2022) Clinical Perspectives on the Use of the GIP/GLP-1 Receptor Agonist Tirzepatide for the Treatment of Type-2 Di-abetes and Obesity. Frontiers in Endocrinology, 13, Article ID: 1004044. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Capozzi, M.E., Dimarchi, R.D., Tschöp, M.H., et al. (2018) Tar-geting the Incretin/Glucagon System with Triagonists to Treat Diabetes. Endocrine Reviews, 39, 719-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Campbell, J.E. and Drucker, D.J. (2015) Islet α Cells and Gluca-gon—Critical Regulators of Energy Homeostasis. Nature Reviews Endocrinology, 11, 329-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Galsgaard, K.D., Pedersen, J., Knop, F.K., et al. (2019) Glucagon Receptor Signaling and Lipid Metabolism. Frontiers in Physiology, 10, Article No. 413. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Tan, T.-M., Field, B.C.T., Mccullough, K.A., et al. (2012) Coad-ministration of Glucagon-Like Peptide-1 during Glucagon Infusion in Humans Results in Increased Energy Expenditure and Amelioration of Hyperglycemia. Diabetes, 62, 1131-1138. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Parker, J.A., Mccullough, K.A., Field, B.C.T., et al. (2013) Glucagon and GLP-1 Inhibit Food Intake and Increase c-fos Expression in Similar Appetite Regulating Centres in the Brainstem and Amygdala. International Journal of Obesity, 37, 1391-1398. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Sánchez-Garrido, M.A., Brandt, S.J., Clemmensen, C., et al. (2017) GLP-1/Glucagon Receptor Co-Agonism for Treatment of Obesity. Diabetologia, 60, 1851-1861. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Elvert, R., Herling, A.W., Bossart, M., et al. (2018) Running on Mixed Fuel-Dual Agonistic Approach of GLP-1 and GCG Receptors Leads to Beneficial Impact on Body Weight and Blood Glucose Control: A Comparative Study between Mice and Non-Human Primates. Diabetes, Obesity and Metabo-lism, 20, 1836-1851. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Finan, B., Ma, T., Ottaway, N., et al. (2013) Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Science Translational Medicine, 5, 209ra151. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Finan, B., Yang, B., Ottaway, N., et al. (2014) A Rationally Designed Monomeric Peptide Triagonist Corrects Obesity and Diabetes in Rodents. Nature Medicine, 21, 27-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Nahra, R., Wang, T., Gadde, K.M., et al. (2022) Erratum. Effects of Cotadu-tide on Metabolic and Hepatic Parameters in Adults with Overweight or Obesity and Type 2 Diabetes: A 54-Week Ran-domized Phase 2b Study. Diabetes Care 2021; 44: 1433-1442. Diabetes Care, 45, 3112. [Google Scholar] [CrossRef] [PubMed]
|