具有梯度吸收项的非局部反应扩散方程解的性质
Properties of Solutions to Nonlocal Reaction-Diffusion Equations with Gradient Absorption Terms
DOI: 10.12677/PM.2023.136170, PDF, HTML, XML,   
作者: 杨来君:兰州交通大学数理学院,甘肃 兰州
关键词: 全局存在爆破下界吸收项Global Existence Blow-Up Lower Bound Absorption Term
摘要: 针对在非局部边界条件下具有梯度吸收项的反应扩散方程解的性质的问题,通过构造适当的辅助函数,利用散度定理、Hölder不等式、Young不等式、Sobolev不等式和微分不等式技巧,得到解的全局存在性和爆破时间的下界的估计。
Abstract: For the properties of solutions of reaction-diffusion equations with gradient absorption terms under non-local boundary conditions, by using auxiliary function, divergence theorem, Hölder inequalities, Young inequalities, Sobolev inequalities and a differential inequality technique, the global existence of the solutions and lower bound for blow-up time are derived.
文章引用:杨来君. 具有梯度吸收项的非局部反应扩散方程解的性质[J]. 理论数学, 2023, 13(6): 1668-1676. https://doi.org/10.12677/PM.2023.136170

1. 引言

本文考虑下列具有梯度吸收项的非局部反应扩散方程在非齐次Neumann边界条件下解的全局存在性和爆破时间的下界

{ u t = Δ u m + k ( t ) u p ( Ω u α d x ) s | u | q , ( x , t ) Ω × ( 0 , t ) , u υ = Ω g ( u ) d x , ( x , t ) Ω × ( 0 , t ) , u ( x , 0 ) = u 0 ( x ) 0 , x Ω ¯ , (1.1)

其中 Ω N ( N 3 ) 是一个具有光滑边界 Ω 的有界域, u υ 表示u在 Ω 上的外法向量导数, t 是爆破时间,初值 u 0 C 1 ( Ω ¯ ) 是正函数且满足相容性条件。

近年来,许多学者对抛物方程和抛物系统解的全局存在性、解的爆破时间的上下界、爆破集、爆破速率和解的渐近行为等解的其他性态进行广泛研究,并取得丰硕的成果 [1] - [6] 。Payne等学者起初在低维空间中研究不同边值条件下解的性态。后来,学者们将其推广到高维空间,继续研究解的性态。目前,关于时变系数和空变系数的非局部反应扩散方程(组)解的性态研究较多 [5] [6] [7] ;其中,有很多学者对反应扩散方程(组)解的全局存在性与爆破进行研究。有关抛物方程和抛物系统下界的研究成果在物理学、生物学、天文学、化学等领域都有重要应用 [8] [9] 。影响解全局存在与爆破的主要因素有初边值条件、时变系数、空变系数、空间维数、吸收项、非线性项以及局部或者非局部等。问题(1.1)可以用于描述物理中气体流量、多孔介质力学、流体力学等两种介质的反应扩散问题 [10] [11] 。

本文的研究受下面文献的启发。

文献 [3] 研究了具有加权非局部源和吸收项的抛物方程

{ u t = Δ u m + a ( x ) u p Ω u q d x u s , ( x , t ) Ω × ( 0 , t ) , u ( x , t ) , ( x , t ) Ω × ( 0 , t ) , u ( x , 0 ) = u 0 ( x ) 0 , x Ω

解的爆破问题,得到了全空间上解爆破的充分条件和爆破发生时爆破时间上下界的估计。

文献 [12] 研究了具有非局部和梯度项的反应扩散方程

{ u t = Δ u + a u p ( Ω u α d x ) m | u | q , ( x , t ) Ω × ( 0 , t ) , u υ = h ( u ) , ( x , t ) Ω × ( 0 , t ) , u ( x , 0 ) = u 0 ( x ) 0 , x Ω ¯ ,

解的爆破问题,运用Sobolev不等式和微分不等式技巧得到了高维空间中爆破时间的下界估计。

文献 [2] 研究了齐次Dirichlet和齐次Neumann边界条件下具有吸收项的非局部多孔介质方程

u t = Δ u m + u p Ω u q d x u s ( x , t ) Ω × ( 0 , t )

解的爆破问题,得到了在三维空间中爆破时间的下界估计。

目前为止,并未发现有学者研究问题(1.1)具有时变系数和梯度吸收项的非局部多孔介质解的全局存在性和爆破现象。本文的研究目标是非线性边界条件下 N ( N 3 ) 上解的全局存在性条件及爆破时间的下界估计。本文研究的难点是构造适当的辅助函数并且恰当处理高维空间、非线性边界条件、时变系数、非局部项、以及吸收项对解的爆破的影响。

2. 全局存在性

引理1 [6] 设 Ω N ( N 3 ) 上的有界凸区域,则对于 u C 1 ( Ω ¯ ) w > 0 ,有不等式

Ω u w d S N ρ 0 Ω u w d x + w d ρ 0 Ω u w 1 | u | d x (2.1)

其中, ρ 0 = min x Ω ( x υ ) d = max x Ω | x |

引理2 [13] 设 λ 1 是固定膜问题

{ Δ w + λ w = 0 , x Ω , w = 0 , x Ω , w > 0 , x Ω

的第一正特征值,则下列不等式成立

Ω u n s 1 | u | q d x ( 2 λ 1 n s + q 1 ) q Ω u n s + q 1 d x (2.2)

定理1设 u ( x , t ) 是问题(1.1)的非负古典解, 0 < g ( θ ) θ r 0 < m < 1 1 < r < 3 m 2 1 < s < 1 p α ξ = max { m + 2 r 2 , p + α s } < q < 1 0 < α + p < 1 k ( t ) k ( t ) < β β > 0 θ > 0 ,则 u ( x , t ) 全局存在。

证明 构造辅助函数

φ ( t ) = k ( t ) Ω u σ d x σ > 1 (2.3)

φ ( t ) 进行求导,可得

φ ( t ) = k ( t ) Ω u σ d x + σ k ( t ) Ω u σ 1 u t d x β φ ( t ) + σ k ( t ) Ω u σ 1 Δ u m d x + σ k 2 ( t ) Ω u p + σ 1 d x ( Ω u α d x ) s σ k ( t ) Ω u σ 1 d x Ω | u | q d x . (2.4)

运用散度定理、(2.1)式和Young不等式,可得

Ω u σ 1 Δ u m d x = Ω u σ 1 u m υ d S m ( σ 1 ) Ω u σ + m 3 | u | 2 d x m b Ω u σ + m 2 u m υ d S Ω u r d x m ( σ 1 ) Ω u σ + m 3 | u | 2 d x N m b | Ω | ρ 0 Ω u σ + m + r 2 d x + ( σ + m 2 ) d m b | Ω | ρ 0 Ω u σ + m + r 3 | u | d x m ( σ 1 ) Ω u σ + m 3 | u | 2 d x N m b | Ω | ρ 0 Ω u σ + m + r 2 d x + ( σ + m 2 ) d m b ε 1 | Ω | 2 ρ 0 Ω u σ + m 3 | u | 2 d x + ( σ + m 2 ) d m b | Ω | 2 ε 1 ρ 0 Ω u σ + m + 2 r 3 d x m ( σ 1 ) Ω u σ + m 3 | u | 2 d x . (2.5)

由(2.5)可得

σ k ( t ) Ω u σ 1 Δ u m d x r 1 σ k ( t ) Ω u σ + m + r 2 d x + r 2 σ 2 ε 1 k ( t ) Ω u σ + m + 2 r 3 d x + r 3 σ k ( t ) Ω u σ + m 3 | u | 2 d x

其中 r 1 = N m b | Ω | ρ 0 r 2 = ( σ + m 2 ) d m b | Ω | ρ 0 r 3 = ( σ + m 2 ) d m b ε 1 | Ω | 2 ρ 0 m ( σ 1 )

选取适当的 ε 1 使得 r 3 0 ,可得

σ k ( t ) Ω u σ 1 Δ u m d x r 1 σ k ( t ) Ω u σ + m + r 2 d x + r 2 σ 2 ε 1 k ( t ) Ω u σ + m + 2 r 3 d x (2.6)

在定理1的条件下,由Hölder不等式和Young不等式,可得

Ω u σ + m + r 2 d x m + r 2 m + 2 r 3 Ω u σ + m + 2 r 3 d x + r 1 m + 2 r 3 Ω u σ d x (2.7)

将(2.7)式代入(2.6)式,可得

σ k ( t ) Ω u σ 1 Δ u m d x r 4 k ( t ) Ω u σ + m + 2 r 3 d x + r 5 k ( t ) Ω u σ d x (2.8)

其中 r 4 = ( m + r 2 ) r 1 σ m + 2 r 3 + r 2 σ 2 ε 1 r 5 = ( r 1 ) r 1 σ m + 2 r 3

在定理1的条件下,对(2.4)式右端第三项运用Hölder不等式,可得

σ k 2 ( t ) Ω u p + σ 1 d x ( Ω u α d x ) s σ k 2 ( t ) | Ω | s Ω u p + σ + α s 1 d x (2.9)

对(2.4)式右端第三项运用(2.2)式,可得

σ k ( t ) Ω u σ 1 d x Ω | u | q d x σ k ( t ) ( 2 λ 1 σ + q 1 ) q Ω u σ + q 1 d x (2.10)

将(2.8)~(2.10)式代入(2.4)式,可得

φ ( t ) ( r 5 + β ) φ ( t ) + r 4 k ( t ) Ω u σ + m + 2 r 3 d x + r 6 k ( t ) Ω u p + σ + α s 1 d x r 7 k ( t ) Ω u σ + q 1 d x (2.11)

其中 r 6 = σ k ( t ) | Ω | s r 7 = σ ( 2 λ 1 σ + q 1 ) q

ξ = max { m + 2 r 2 , p + α s } ,可得

φ ( t ) ( r 5 + β ) φ ( t ) + ( r 4 + r 6 ) k ( t ) Ω u σ + ξ 1 d x r 7 k ( t ) Ω u σ + q 1 d x (2.12)

在定理1的条件下,由Hölder不等式和Young不等式,可得

Ω u σ + ξ 1 d x ( Ω u σ + q 1 d x ) ξ 1 q 1 ( Ω u σ d x ) q ξ q 1 ξ 1 q 1 ε 2 Ω u σ + q 1 d x + q ξ q 1 ε 2 ξ 1 q ξ Ω u σ d x (2.13)

将(2.13)式代入(2.12)式,可得

φ ( t ) r 8 φ ( t ) r 9 k ( t ) Ω u σ + q 1 d x (2.14)

其中 r 8 = r 5 + β + q ξ q 1 ε 2 ξ 1 q ξ ( r 4 + r 6 ) r 9 = r 7 ξ 1 q 1 ε 2 ( r 4 + r 6 )

在定理1的条件下,由Hölder不等式,可得

Ω u σ + q 1 d x ( Ω u σ d x ) σ + q 1 σ | Ω | 1 q σ (2.15)

将(2.15)式代入(2.14)式,可得

φ ( t ) φ ( t ) ( r 8 r 9 | Ω | 1 q σ k 1 q σ ( t ) φ q 1 σ ( t ) ) (2.16)

如果u在 φ ( t ) 度量下的某个 t 爆破,即 lim t t φ ( t ) = ;由(2.16)式可知,对 t < t φ ( t ) 0 ,于是产生矛盾。

3. 爆破时间的下界

引理3 [14] 将 W 1 , 2 ( Ω ) 嵌入 L 2 N N 2 ( Ω ) N 3 ,可知

( Ω ω 2 N / ( N 2 ) d x ) ( N 2 ) / 2 N C ( Ω ω 2 d x + Ω | ω | 2 d x ) 1 / 2 (3.1)

其中 ω W 1 , 2 ( Ω ) C = C ( N , Ω )

定理2 设 u ( x , t ) 是问题(1.1)的非负古典解, 0 < g ( θ ) θ r θ > 0 m > 1 r > max { 1 , m 2 q 2 } q > 2 m + 2 r > max { 3 , p + α s + 2 } k ( t ) k ( t ) < β β > 0 ,则 u ( x , t ) 在有限时间 t 发生爆破,其中 t ϕ ( 0 ) + d η δ β η + M 5 η A + M 4 M 4 M 5 和A分别在(3.20)式和(3.22)式给出。

证明 构造辅助函数

ϕ ( t ) = k δ ( t ) Ω u σ d x (3.2)

其中 δ > 1 σ > N ( r 1 )

ϕ ( t ) 进行求导并运用散度定理,可得

ϕ ( t ) = δ k δ 1 ( t ) k ( t ) Ω u σ d x + σ k δ ( t ) Ω u σ 1 u t d x δ β ϕ ( t ) + σ k δ ( t ) Ω u σ 1 Δ u m d x + σ k δ + 1 ( t ) Ω u σ + p 1 d x ( Ω u α d x ) s σ k δ ( t ) Ω u σ 1 | u | q d x δ β ϕ ( t ) σ k δ ( t ) m ( σ 1 ) Ω u σ + m 3 | u | 2 d x + σ k δ ( t ) m Ω u σ + m 2 d S Ω u r d x + σ k δ + 1 ( t ) Ω u σ + p 1 d x ( Ω u α d x ) s σ k δ ( t ) Ω u σ 1 | u | q d x . (3.3)

在定理2的条件下,由Hölder不等式和Young不等式,可得

Ω u σ + m 3 | u | 2 d x ( Ω u σ 1 | u | q d x ) 2 q ( Ω u σ + m 3 + 2 ( m 2 ) / ( q 2 ) d x ) q 2 q Ω u σ 1 | u | q d x + q 2 q ( q 2 ) 2 / ( 2 q ) Ω u σ + m 3 + 2 ( m 2 ) / ( q 2 ) d x . (3.4)

将(3.4)式代入(3.3)式,可得

ϕ ( t ) δ β ϕ ( t ) 4 σ ( m ( σ 1 ) + 1 ) ( σ + m 1 ) 2 k δ ( t ) Ω | u ( σ + m 1 ) / 2 | 2 d x + σ k δ ( t ) q 2 q ( q 2 ) 2 / ( 2 q ) Ω u σ + m 3 + 2 ( m 2 ) / ( q 2 ) d x + σ k δ ( t ) m Ω u σ + m 2 d S Ω u r d x + σ k δ + 1 ( t ) Ω u σ + p 1 d x ( Ω u α d x ) s . (3.5)

在定理2的条件下,由(2.1)式、Hölder不等式和Young不等式,可得

Ω u σ + m 2 d S Ω u r d x N | Ω | ρ 0 Ω u σ + m + r 2 d x + ( σ + m 2 ) d | Ω | ρ 0 Ω u σ + m + r 3 | u | d x N | Ω | ρ 0 Ω u σ + m + r 2 d x + ( σ + m 2 ) 2 τ 1 d | Ω | ρ 0 ( σ + m 1 ) 2 Ω | u ( σ + m 1 ) / 2 | 2 d x + ( σ + m 2 ) d | Ω | 2 ρ 0 τ 1 Ω u σ + m + 2 r 3 d x . (3.6)

τ 1 = ρ 0 ( ( m ( σ 1 ) + 1 ) ) ( σ + m 2 ) σ m d | Ω | 并将(3.6)式代入(3.5)式,可得

ϕ ( t ) δ β ϕ ( t ) 2 σ ( m ( σ 1 ) + 1 ) ( σ + m 1 ) 2 k δ ( t ) Ω | u ( σ + m 1 ) / 2 | 2 d x + ( σ + m 2 ) d σ m | Ω | 2 ρ 0 τ 1 k δ ( t ) Ω u σ + m + 2 r 3 d x + N σ m | Ω | ρ 0 Ω u σ + m + r 2 d x + σ k δ ( t ) q 2 q ( q 2 ) 2 / ( 2 q ) Ω u σ + m 3 + 2 ( m 2 ) / ( q 2 ) d x + σ k δ + 1 ( t ) Ω u σ + p 1 d x ( Ω u α d x ) s . (3.7)

在定理2的条件下,由Hölder不等式和Young不等式,可得

Ω u σ + p 1 d x ( Ω u α d x ) s [ ( Ω u σ + m + 2 r 3 d x ) ( σ + p + α s 1 ) / ( σ + m + 2 r 3 ) | Ω | m + 2 r p α s 2 σ + m + 2 r 3 ] | Ω | s σ + p + α s 1 σ + m + 2 r 3 | Ω | s Ω u σ + m + 2 r 3 d x + m + 2 r p α s 2 σ + m + 2 r 3 | Ω | 1 + s , (3.8)

Ω u σ + m + r 2 d x ( Ω u σ + m + 2 r 3 d x ) ( σ + m + r 2 ) / ( σ + m + 2 r 3 ) | Ω | r 1 σ + m + 2 r 3 σ + m + r 2 σ + m + 2 r 3 Ω u σ + m + 2 r 3 d x + r 1 σ + m + 2 r 3 | Ω | , (3.9)

Ω u σ + m 3 + 2 ( m 2 ) / ( q 2 ) d x ( Ω u σ + m + 2 r 3 d x ) ( σ + m 3 + 2 ( m 2 ) / ( q 2 ) ) / ( σ + m + 2 r 3 ) | Ω | 2 r 2 ( m 2 ) / ( q 2 ) σ + m + 2 r 3 σ + m 3 + 2 ( m 2 ) / ( q 2 ) σ + m + 2 r 3 Ω u σ + m + 2 r 3 d x + 2 r 2 ( m 2 ) / ( q 2 ) σ + m + 2 r 3 | Ω | . (3.10)

将(3.8)~(3.10)式代入(3.7),可得

ϕ ( t ) δ β ϕ ( t ) 2 σ ( m ( σ 1 ) + 1 ) ( σ + m 1 ) 2 k δ ( t ) Ω | u ( σ + m 1 ) / 2 | 2 d x + M 1 k δ ( t ) Ω u σ + m + 2 r 3 d x + M 2 (3.11)

其中

M 1 = ( σ + m 2 ) d σ m | Ω | 2 ρ 0 τ 1 + N σ m | Ω | ( σ + m + r 2 ) ρ 0 ( σ + m + 2 r 3 ) + σ ( q 2 ) ( σ + m 3 + 2 ( m 2 ) / ( q 2 ) ) q ( σ + m + 2 r 3 ) ( q 2 ) 2 / 2 q + ( σ + p + α s 1 ) σ k ( t ) | Ω | s σ + m + 2 r 3 ,

M 2 = N σ m | Ω | 2 ( r 1 ) ρ 0 ( σ + m + 2 r 3 ) + σ ( q 2 ) ( 2 r 2 ( m 2 ) / ( q 2 ) ) | Ω | q ( σ + m + 2 r 3 ) ( q 2 ) 2 / ( 2 q ) + ( m + 2 r p α s 2 ) σ k δ + 1 ( t ) | Ω | 1 + s σ + m + 2 r 3 .

σ > N ( r 1 ) 、Hölder不等式和(3.1)式,可得

Ω u σ + m + 2 r 3 d x ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + N ( m 1 ) ( Ω ( u σ + m 1 2 ) 2 N N 2 d x ) ( m + 2 r 3 ) ( N 2 ) 2 σ + N ( m 1 ) ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + N ( m 1 ) [ C 2 N N 2 ( Ω u σ + m 1 d x + Ω | u σ + m 1 2 | 2 d x ) N N 2 ] ( m + 2 r 3 ) ( N 2 ) 2 σ + N ( m 1 ) = ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + N ( m 1 ) C 2 N ( m + 2 r 3 ) 2 σ + N ( m 1 ) ( Ω u σ + m 1 d x + Ω | u σ + m 1 2 | 2 d x ) N ( m + 2 r 3 ) 2 σ + N ( m 1 ) . (3.12)

通过基本不等式

( b 1 + b 2 ) i b 1 i + b 2 i b 1 , b 2 > 0 , 0 i < 1 (3.13)

将(3.13)式代入(3.12),可得

Ω u σ + m + 2 r 3 d x ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + N ( m 1 ) C 2 N ( m + 2 r 3 ) 2 σ + N ( m 1 ) ( Ω u σ + m 1 d x ) N ( m + 2 r 3 ) 2 σ + N ( m 1 ) + ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + N ( m 1 ) C 2 N ( m + 2 r 3 ) 2 σ + N ( m 1 ) ( Ω | u σ + m 1 2 | 2 d x ) N ( m + 2 r 3 ) 2 σ + N ( m 1 ) . (3.14)

σ > N ( r 1 ) 、Hölder不等式和Young不等式,可得

( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + N ( m 1 ) C 2 N ( m + 2 r 3 ) 2 σ + N ( m 1 ) ( Ω u σ + m 1 d x ) N ( m + 2 r 3 ) 2 σ + N ( m 1 ) ( ( N C 2 ( m + 2 r 3 ) 2 σ + N ( m 1 ) ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + 2 N ( 1 r ) ) 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( 2 σ + N ( m 1 ) N ( m + 2 r 3 ) Ω u σ + m 1 d x ) N ( m + 2 r 3 ) 2 σ + N ( m 1 ) 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( 2 N C 2 ( m + 2 r 3 ) 2 σ + N ( m 1 ) ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + 2 N ( 1 r ) + Ω u σ + m 1 d x , (3.15)

Ω u σ + m 1 d x ( σ + m + 2 r 3 2 ( σ + m 1 ) Ω u σ + m + 2 r 3 d x ) σ + m 1 σ + m + 2 r 3 ( ( σ + m + 2 r 3 2 ( σ + m 1 ) ) ( σ + m 1 ) 2 ( r 1 ) | Ω | ) 2 ( r 1 ) σ + m + 2 r 3 1 2 Ω u σ + m + 2 r 3 d x + 2 ( r 1 ) σ + m + 2 r 3 ( σ + m + 2 r 3 2 ( σ + m 1 ) ) ( σ + m 1 ) 2 ( r 1 ) | Ω | , (3.16)

( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + N ( m 1 ) C 2 N ( m + 2 r 3 ) 2 σ + N ( m 1 ) ( Ω | u σ + m 1 2 | 2 d x ) N ( m + 2 r 3 ) 2 σ + N ( m 1 ) ( ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + 2 N ( m 1 ) ( C 2 τ 2 1 ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) ) 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( τ 2 Ω | u σ + m 1 2 | 2 d x ) N ( m + 2 r 3 ) 2 σ + N ( m 1 ) 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + 2 N ( m 1 ) ( C 2 τ 2 1 ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) + N τ 2 ( m + 2 r 3 ) 2 σ + N ( m 1 ) Ω | u σ + m 1 2 | 2 d x . (3.17)

将(3.15)~(3.17)式代入(3.14),可得

Ω u σ + m + 2 r 3 d x 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( 2 N C 2 ( m + 2 r 3 ) 2 σ + N ( m 1 ) ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + 2 N ( 1 r ) + 1 2 Ω u σ + m + 2 r 3 d x + 2 ( r 1 ) σ + m + 2 r 3 ( σ + m + 2 r 3 2 ( σ + m 1 ) ) σ + m 1 2 ( r 1 ) | Ω | + N τ 2 ( m + 2 r 3 ) 2 σ + N ( m 1 ) Ω | u σ + m 1 2 | 2 d x + 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + 2 N ( m 1 ) ( C 2 τ 2 1 ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) 2 ( 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( 2 N C 2 ( m + 2 r 3 ) 2 σ + N ( m 1 ) ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) + 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( C 2 τ 2 1 ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) ) × ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + 2 N ( 1 r ) + 4 ( r 1 ) σ + m + 2 r 3 ( σ + m + 2 r 3 2 ( σ + m 1 ) ) ( σ + m 1 ) 2 ( r 1 ) | Ω | + 2 N τ 2 ( m + 2 r 3 ) 2 σ + N ( m 1 ) Ω | u σ + m 1 2 | 2 d x . (3.18)

τ 2 = 2 σ ( 2 σ + N ( m 1 ) ) ( m ( σ 1 ) + 1 ) 2 N M 1 ( m + 2 r 3 ) ( σ + m 1 ) 2 并将(3.18)式代入(3.11),可得

ϕ ( t ) δ β ϕ ( t ) + M 3 k δ ( t ) ( Ω u σ d x ) 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + 2 N ( 1 r ) + M 4 (3.19)

其中

M 3 = 2 M 1 ( 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( 2 N C 2 ( m + 2 r 3 ) 2 σ + N ( m 1 ) ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) + 2 σ + 2 N ( 1 r ) 2 σ + N ( m 1 ) ( C 2 τ 2 1 ) N ( m + 2 r 3 ) 2 σ + 2 N ( 1 r ) )

M 4 = 4 M 1 k δ ( t ) ( r 1 ) σ + m + 2 r 3 ( σ + m + 2 r 3 2 ( σ + m 1 ) ) ( σ + m 1 ) 2 ( r 1 ) | Ω | + M 2 (3.20)

由(3.19),可得

ϕ ( t ) δ β ϕ ( t ) + M 5 ( ϕ ( t ) ) A + M 4 (3.21)

其中

M 5 = M 3 ( k ( t ) ) δ δ A A = 2 σ + N ( m 1 ) ( m + 2 r 3 ) ( N 2 ) 2 σ + 2 N ( 1 r ) (3.22)

对(3.21)式两边从0到t积分,可得

t ϕ ( 0 ) + d η δ β η + M 5 η A + M 4

参考文献

[1] 李飞远. 一类系数依赖于时间的抛物系统解的全局存在性和爆破现象[J]. 数学的实践与认识, 2019, 49(4): 193-200.
[2] Fang, Z.B., Yang, R. and Chai, Y. (2014) Lower Bounds Estimate for the Blow-Up Time of a Slow Diffusion Equation with Nonlocal Source and inner Absorption. Mathematical Problems in Engineering, 2014, Article ID: 764248.
https://doi.org/10.1155/2014/764248
[3] Shen, Y.D. and Fang, Z.B. (2018) Bounds for the Blow-Up Time of a Porous Medium Equation with Weighted Nonlocal Source and Inner Absorption Terms. Boundary Value Problems, 2018, Article No. 116.
https://doi.org/10.1186/s13661-018-1038-3
[4] Chen, W.H. and Liu, Y. (2016) Lower Bound for the Blow-Up Time for Some Nonlinear Parabolic Equations. Boundary Value Problems, 2016, Article No. 161.
https://doi.org/10.1186/s13661-016-0669-5
[5] Shen, X.H. and Ding, J.T. (2019) Blow-Up Phenomena in Porous Medium Equation Systems with Nonlinear Boundary Conditions. Computers & Mathematics with Applications, 77, 3250-3263.
https://doi.org/10.1016/j.camwa.2019.02.007
[6] Payne, L.E., Philippin, G.A. and Vernier, P.S. (2010) Blow-Up Phenomena for a Semilinear Heat Equationwith Nonlinearboundary Condition II. Nonlinear Analysis, 73, 971-978.
https://doi.org/10.1016/j.na.2010.04.023
[7] Zheng, Y.D. and Fang, Z.B. (2020) Blow-Up Analysis for a Weakly Coupled Reaction-Diffusion System with Gradient Sources Terms and Time-Dependent Coefficients. Acta Mathematica Scientia, 40A, 735-755.
[8] Bandle, C. and Brunner, H. (1998) Blow-Up in Diffusion Equations: A Survey. Journal of Computational and Applied Mathematics, 97, 3-22.
https://doi.org/10.1016/S0377-0427(98)00100-9
[9] Straughan, B. (1998) Explosive Instabilities in Mechamics. Spring-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-58807-5
[10] Bebernes, J. and Bressan, A. (1982) Thermal Behavior for a Confined Reactive Gas. Journal of Differential Equations, 44, 118-133.
https://doi.org/10.1016/0022-0396(82)90028-6
[11] Bebernes, J. and Eberly, D. (1989) Mathematical Problems from Combustion Theory. Springer, New York.
https://doi.org/10.1007/978-1-4612-4546-9
[12] Shen, X.H. and Lan, L. (2022) Blow-Up Analysis for a Reac-tion-Diffusion Model with Nonlocal and Gradient Terms. Mathematical Problems in Engineering, 2022, Article ID: 4150728.
https://doi.org/10.1155/2022/4150728
[13] Payne, L.E., Philippin, G.A. and Schaefer, P.W. (2008) Blow-Up Phenomena for Some Nonlinearparabolic Problems. Nonlinear Analysis, 69, 3495-3502.
https://doi.org/10.1016/j.na.2007.09.035
[14] Brezis, H. (2011) Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer.
https://doi.org/10.1007/978-0-387-70914-7