|
[1]
|
Sagi, D. (2011) Perceptual Learning in Vision Research. Vision Research, 51, 1552-1566. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Song, Y., Chen, N. and Fang, F. (2021) Effects of Daily Training Amount on Visual Motion Perceptual Learning. Journal of Vision, 21, 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Amar-Halpert, R., Laor-Maayany, R., Nemni, S., Rosenblatt, J.D. and Censor, N. (2017) Memory Reactivation Improves Visual Perception. Nature Neuroscience, 20, 1325-1328. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Nader, K., Schafe, G.E. and Le Doux, J.E. (2000) Fear Memories Require Protein Synthesis in the Amygdala for Reconsolidation after Retrieval. Nature, 406, 722-726. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Walker, M.P., Brakefield, T., Hobson, J.A. and Stickgold, R. (2003) Dissociable Stages of Human Memory Consolidation and Reconsolidation. Nature, 425, 616-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Deębiec, J., Doyère, V., Nader, K. and LeDoux, J.E. (2006) Directly Reactivated, but Not Indirectly Reactivated, Memories Undergo Reconsolidation in the Amygdala. Proceedings of the National Academy of Sciences of the United States of America, 103, 3428-3433.
|
|
[7]
|
Lee, J.L., Everitt, B.J. and Thomas, K.L. (2004) Independent Cellular Processes for Hippocampal Memory Consolidation and Reconsolidation. Science, 304, 839-843. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hardwicke, T.E., Taqi, M. and Shanks, D.R. (2016) Postretrieval New Learning Does Not Reliably Induce Human Memory Updating via Reconsolidation. Proceedings of the National Academy of Sciences of the United States of America, 113, 5206-5211. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bang, J.W., Shibata, K., Frank, S.M., Walsh, E.G., Greenlee, M.W., Watanabe, T. and Sasaki, Y. (2018) Consolidation and Reconsolidation Share Behavioral and Neurochemical Mechanisms. Nature Human Behaviour, 2, 507-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Dayan, E. and Cohen, L.G. (2011) Neuroplasticity Subserving Motor Skill Learning. Neuron, 72, 443-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Stickgold, R., Hobson, J.A., Fosse, R. and Fosse, M. (2001) Sleep, Learning, and Dreams: Off-Line Memory Reprocessing. Science, 294, 1052-1057. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chen, C.Y. and Op de Beeck, H. (2021) Perceptual Learning with Complex Objects: A Comparison between Full-Practice Training and Memory Reactivation. eNeuro, 8, ENEURO.0008-19.2021. [Google Scholar] [CrossRef]
|
|
[13]
|
Herszage, J., Sharon, H. and Censor, N. (2021) Reactiva-tion-Induced Motor Skill Learning. Proceedings of the National Academy of Sciences of the United States of America, 118, e2102242118. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Klorfeld-Auslender, S., Paz, Y., Shinder, I., Rosenblatt, J., Dinstein, I. and Censor, N. (2022) A Distinct Route for Efficient Learning and Generalization in Autism. Current Biology, 32, 3203-3209.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Harris, H., Israeli, D., Minshew, N., Bonneh, Y., Heeger, D.J., Behrmann, M. and Sagi, D. (2015) Perceptual Learning in Autism: Over-Specificity and Possible Remedies. Nature Neuroscience, 18, 1574-1576. [Google Scholar] [CrossRef] [PubMed]
|