|
[1]
|
Röllig, C., Knop, S. and Bornhäuser, M. (2015) Multiple Myeloma. The Lancet (London, England), 385, 2197-2208. [Google Scholar] [CrossRef]
|
|
[2]
|
Sadelain, M., Brentjens, R. and Rivière, I. (2013) The Basic Principles of Chimeric Antigen Receptor Design. Cancer Discovery, 3, 388-398. [Google Scholar] [CrossRef]
|
|
[3]
|
Kochenderfer, J.N. and Rosenberg, S.A. (2013) Treating B-Cell Cancer with T Cells Expressing Anti-CD19 Chimeric Antigen Receptors. Nature Reviews. Clinical Oncology, 10, 267-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Maus, M.V., Grupp, S.A., Porter, D.L. and June, C.H. (2014) Antibody-Modified T Cells: CARs Take the Front Seat for Hematologic Malignancies. Blood, 123, 2625-2635. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kershaw, M.H., Westwood, J.A. and Darcy, P.K. (2013) Gene-Engineered T Cells for Cancer Therapy. Nature Reviews Cancer, 13, 525-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Holzinger, A. and Abken, H. (2019) CAR T Cells: A Snapshot on the Grow-ing Options to Design a CAR. HemaSphere, 3, e172. [Google Scholar] [CrossRef]
|
|
[7]
|
Ramos, C.A., Savoldo, B., Torrano, V., Ballard, B., Zhang, H., Dakhova, O., Liu, E., Carrum, G., Kamble, R.T., Gee, A.P., Mei, Z., Wu, M.F., Liu, H., Grilley, B., Rooney, C.M., Brenner, M.K., Heslop, H.E. and Dotti, G. (2016) Clinical Responses with T Lymphocytes Targeting Malignancy-Associated κ Light Chains. The Journal of Clinical Investigation, 126, 2588-2596. [Google Scholar] [CrossRef]
|
|
[8]
|
Levine, B.L., Miskin, J., Wonnacott, K. and Keir, C. (2016) Global Manufacturing of CAR T Cell Therapy. Molecular Therapy. Methods & Clinical Development, 4, 92-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kumar, S.K., Rajkumar, V., Kyle, R.A., van Duin, M., Sonneveld, P., Mateos, M.V., Gay, F. and Anderson, K.C. (2017) Multiple Myeloma. Nature Reviews Disease Primers, 3, Article No. 17046. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sadelain, M., Rivière, I. and Riddell, S. (2017) Therapeutic T Cell Engi-neering. Nature, 545, 423-431. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kochenderfer, J.N., Somerville, R.P.T., Lu, T., Shi, V., Bot, A., Rossi, J., Xue, A., Goff, S.L., Yang, J.C., Sherry, R.M., Klebanoff, C.A., Kammula, U.S., Sherman, M., Perez, A., Yuan, C.M., Feldman, T., Friedberg, J.W., Roschewski, M.J., Feldman, S.A., McIntyre, L. and Rosenberg, S.A. (2017) Lymphoma Remissions Caused by Anti-CD19 Chimeric Antigen Receptor T Cells Are Associated with High Serum Interleukin-15 Levels. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 35, 1803-1813. [Google Scholar] [CrossRef]
|
|
[12]
|
Brudno, J.N. and Kochenderfer, J.N. (2018) Chimeric Antigen Receptor T-Cell Therapies for Lymphoma. Nature Reviews Clinical Oncology, 15, 31-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Neelapu, S.S., Locke, F.L., Bartlett, N.L., Lekakis, L.J., Miklos, D.B., Jacobson, C.A., Braunschweig, I., Oluwole, O.O., Siddiqi, T., Lin, Y., Timmerman, J.M., Stiff, P.J., Friedberg, J.W., Flinn, I.W., Goy, A., Hill, B.T., Smith, M.R., Deol, A., Farooq, U., McSweeney, P. and Go, W.Y. (2017) Axi-cabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. The New England Journal of Medicine, 377, 2531-2544. [Google Scholar] [CrossRef]
|
|
[14]
|
Schuster, S.J., Svoboda, J., Chong, E.A., Nasta, S.D., Mato, A.R., Anak, Ö., Brogdon, J.L., Pruteanu-Malinici, I., Bhoj, V., Landsburg, D., Wasik, M., Levine, B.L., Lacey, S.F., Melen-horst, J.J., Porter, D.L. and June, C.H. (2017) Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. The New England Journal of Medicine, 377, 2545-2554. [Google Scholar] [CrossRef]
|
|
[15]
|
Lim, W.A. and June, C.H. (2017) The Principles of Engineering Immune Cells to Treat Cancer. Cell, 168, 724-740. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhao, W.H., Liu, J., Wang, B.Y., Chen, Y.X., Cao, X.M., Yang, Y., Zhang, Y.L., Wang, F.X., Zhang, P.Y., Lei, B., Gu, L.F., Wang, J.L., Yang, N., Zhang, R., Zhang, H., Shen, Y., Bai, J., Xu, Y., Wang, X.G., Zhang, R.L. and Zhang, W.G. (2018) A Phase 1, Open-Label Study of LCAR-B38M, a Chimeric Antigen Receptor T Cell Therapy Directed against B Cell Maturation Antigen, in Patients with Relapsed or Refractory Multiple Myeloma. Journal of Hematology & Oncology, 11, Article No. 141. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Yan, Z., Zhang, H., Cao, J., et al. (2021) Characteristics and Risk Factors of Cytokine Release Syndrome in Chimeric Antigen Receptor T Cell Treatment. Frontiers in Immunology, 12, Article ID: 611366. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wang, X. and Rivière, I. (2016) Clinical Manufacturing of CAR T Cells: Foundation of a Promising Therapy. Molecular Therapy Oncolytics, 3, Article No. 16015. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Brudno, J.N. and Kochenderfer, J.N. (2019) Recent Advances in CAR T-Cell Toxicity: Mechanisms, Manifestations and Management. Blood Reviews, 34, 45-55. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lee, D.W., Santomasso, B.D., Locke, F.L., Ghobadi, A., Turtle, C.J., Brudno, J.N., Maus, M.V., Park, J.H., Mead, E., Pavletic, S., Go, W.Y., Eldjerou, L., Gardner, R.A., Frey, N., Curran, K.J., Peggs, K., Pasquini, M., DiPersio, J.F., van den Brink, M.R.M., Komanduri, K.V. and Neelapu, S.S. (2019) ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated with Immune Effector Cells. Biology of Blood and Marrow Transplantation: Journal of the American Society for Blood and Marrow Trans-plantation, 25, 625-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cohen, A.D., Garfall, A.L., Stadtmauer, E.A., Melenhorst, J.J., Lacey, S.F., Lancaster, E., Vogl, D.T., Weiss, B.M., Dengel, K., Nelson, A., Plesa, G., Chen, F., Davis, M.M., Hwang, W.T., Young, R.M., Brogdon, J.L., Isaacs, R., Pruteanu-Malinici, I., Siegel, D.L., Levine, B.L. and Milone, M.C. (2019) B Cell Maturation Antigen-Specific CAR T Cells Are Clinically Active in Multiple Myeloma. The Journal of Clinical Investigation, 129, 2210-2221. [Google Scholar] [CrossRef]
|
|
[22]
|
Srivastava, S. and Riddell, S.R. (2015) Engineering CAR-T Cells: Design Concepts. Trends in Immunology, 36, 494-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Baumeister, S.H., Murad, J., Werner, L., Daley, H., Trebeden-Negre, H., Gicobi, J.K., Schmucker, A., Reder, J., Sentman, C.L., Gilham, D.E., Lehmann, F.F., Galinsky, I., DiPietro, H., Cummings, K., Munshi, N.C., Stone, R.M., Neuberg, D.S., Soiffer, R., Dranoff, G., Ritz, J. and Nikiforow, S. (2019) Phase I Trial of Autologous CAR T Cells Targeting NKG2D Ligands in Patients with AML/MDS and Multiple Myeloma. Cancer Immunology Research, 7, 100-112. [Google Scholar] [CrossRef]
|
|
[24]
|
Schaefer, A., et al. (2019) Cytopenias after Chimeric Antigen Receptor T-Cells (CAR-T) Infusion; Patterns and Outcomes. Biology of Blood and Marrow Transplantation, 25, S171. [Google Scholar] [CrossRef]
|
|
[25]
|
Mei, H., Li, C., Jiang, H., Zhao, X., Huang, Z., Jin, D., Guo, T., Kou, H., Liu, L., Tang, L., Yin, P., Wang, Z., Ai, L., Ke, S., Xia, Y., Deng, J., Chen, L., Cai, L., Sun, C., Xia, L. and Hu, Y. (2021) A Bispecific CAR-T Cell Therapy Targeting BCMA and CD38 in Relapsed or Refractory Multiple Myeloma. Journal of Hematology & Oncology, 14, Article No. 161. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Porter, D., Frey, N., Wood, P.A., Weng, Y. and Grupp, S.A. (2018) Grading of Cytokine Release Syndrome Associated with the CAR T Cell Therapy Tisagenlecleucel. Journal of Hematology & Oncology, 11, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lee, D.W., Gardner, R., Porter, D.L., Louis, C.U., Ahmed, N., Jensen, M., Grupp, S.A. and Mackall, C.L. (2014) Current Concepts in the Diagnosis and Management of Cytokine Re-lease Syndrome. Blood, 124, 188-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, J., Chen, L.J., Yang, S.S., Sun, Y., Wu, W., Liu, Y.F., Xu, J., Zhuang, Y., Zhang, W., Weng, X.Q., Wu, J., Wang, Y., Wang, J., Yan, H., Xu, W.B., Jiang, H., Du, J., Ding, X.Y., Li, B., Li, J.M. and Chen, S.J. (2019) Exploratory Trial of a Biepitopic CAR T-Targeting B Cell Maturation Antigen in Relapsed/Refractory Multiple Myeloma. Proceedings of the National Academy of Sciences of the United States of Ameri-ca, 116, 9543-9551. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Carpenter, R.O., Evbuomwan, M.O., Pittaluga, S., Rose, J.J., Raf-feld, M., Yang, S., Gress, R.E., Hakim, F.T. and Kochenderfer, J.N. (2013) B-Cell Maturation Antigen Is a Promising Target for Adoptive T-Cell Therapy of Multiple Myeloma. Clinical Cancer Research: An Official Journal of the Ameri-can Association for Cancer Research, 19, 2048-2060. [Google Scholar] [CrossRef]
|
|
[30]
|
Smith, E.L., Harrington, K., Staehr, M., Masakayan, R., Jones, J., Long, T.J., Ng, K.Y., Ghoddusi, M., Purdon, T.J., Wang, X., Do, T., Pham, M.T., Brown, J.M., De Larrea, C.F., Olson, E., Peguero, E., Wang, P., Liu, H., Xu, Y., Garrett-Thomson, S.C. and Brentjens, R.J. (2019) GPRC5D Is a Target for the Immunotherapy of Multiple Myeloma with Rationally De-signed CAR T Cells. Science Translational Medicine, 11, eaau7746. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Boudreault, J.S., Touzeau, C. and Moreau, P. (2017) The Role of SLAMF7 in Multiple Myeloma: Impact on Therapy. Expert Review of Clinical Immunology, 13, 67-75. [Google Scholar] [CrossRef]
|