|
[1]
|
Chen, Y., Fu, A. and Ip, N.Y. (2019) Synaptic Dysfunction in Alzheimer’s Disease: Mechanisms and Therapeutic Strat-egies. Pharmacology & Therapeutics, 195, 186-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Parr, E., Ferdinand, P. and Roffe, C. (2017) Management of Acute Stroke in the Older Person. Geriatrics, 2, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Radenovic, L., Nenadic, M., Ulamek-Koziol, M., et al. (2020) Het-erogeneity in Brain Distribution of Activated Microglia and Astrocytes in a Rat Ischemic Model of Alzheimer’s Disease after 2 Years of Survival. Aging, 12, 12251-12267. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Pluta, R., Ułamek-Kozioł, M., Kocki, J., et al. (2020) Expression of the Tau Protein and Amyloid Protein Precursor Processing Genes in the CA3 Area of the Hippocampus in the Ischemic Model of Alzheimer’s Disease in the Rat. Molecular Neu-robiology, 57, 1281-1290. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Ułamek-Kozioł, M., Czuczwar, S.J., Januszewski, S. and Pluta, R. (2020) Proteomic and Genomic Changes in Tau Protein, Which Are Associated with Alz-heimer’s Disease after Ischemia-Reperfusion Brain Injury. International Journal of Molecular Sciences, 21, Article No. 892. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chamorro, Á., Urra, X. and Planas, A.M. (2007) Infection after Acute Ischemic Stroke: A Manifestation of Brain-Induced Immunodepression. Stroke, 38, 1097-1103. [Google Scholar] [CrossRef]
|
|
[7]
|
Li, N., Wang, X., Sun, C., et al. (2019) Change of In-testinal Microbiota in Cerebral Ischemic Stroke Patients. BMC Microbiology, 19, Article No. 191. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Murray, C.J.L. and Lopez, A.D. (2013) Measuring the Global Burden of Disease. New England Journal of Medicine, 369, 448-457. [Google Scholar] [CrossRef]
|
|
[9]
|
Rasoul, M., Rokhsareh, M., Mohammad, S.M., Sajad, K. and Ah-madreza, M. (2019) The Human Immune System against Staphylococcus epidermidis. Critical Reviews™ in Immunology, 39, 151-163. [Google Scholar] [CrossRef]
|
|
[10]
|
Takiishi, T., Fenero, C.I.M.F. and Câmara, N.O.S. (2017) Intestinal Barrier and Gut Microbiota: Shaping Our Immune Responses throughout Life. Tissue Barriers, 5, e1373208. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Holscher, H.D. (2017) Dietary Fiber and Prebi-otics and the Gastrointestinal Microbiota. Gut Microbes, 8, 172-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Venegas, D.P., De la Fuente, M.K., Landskron, G., et al. (2019) Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for In-flammatory Bowel Diseases. Frontiers in Immunology, 10, Article 277. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Shultz, S.R., Macfabe, D.F., Martin, S., et al. (2009) Intracerebro-ventricular Injections of the Enteric Bacterial Metabolic Product Propionic Acid Impair Cognition and Sensorimotor Abil-ity in the Long-Evans Rat: Further Development of a Rodent Model of Autism. Behavioural Brain Research, 200, 33-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Maurer, M.H., Canis, M., Kuschinsky, W. and Duelli, R. (2004) Correlation between Local Monocarboxylate Transporter 1 (MCT1) and Glucose Transporter 1 (GLUT1) Densities in the Adult Rat Brain. Neuroscience Letters, 355, 105-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
MacFabe, D.F., Cain, D.P., Rodriguez-Capote, K., et al. (2007) Neurobiological Effects of Intraventricular Propionic Acid in Rats: Possible Role of Short Chain Fatty Acids on the Pathogenesis and Characteristics of Autism Spectrum Disorders. Be-havioural Brain Research, 176, 149-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bonnet, U., Bingmann, D. and Wiemann, M. (2000) Intracellular pH Modulates Spontaneous and Epileptiform Bioelectric Activity of Hippocampal CA3-Neurones. European Neuropsychopharmacology, 10, 97-103. [Google Scholar] [CrossRef]
|
|
[17]
|
Cannizzaro, C., Monastero, R., Vacca, M., et al. (2003) [3H]-DA Release Evoked by Low pH Medium and Internal H+ Accumulation in Rat Hypothalamic Synaptosomes: In-volvement of Calcium Ions. Neurochemistry International, 43, 9-17. [Google Scholar] [CrossRef]
|
|
[18]
|
Nakamura, Y.K., Janowitz, C., Metea, C., et al. (2017) Short Chain Fatty Acids Ameliorate Immune-Mediated Uveitis Partially by Altering Migration of Lymphocytes from the Intes-tine. Scientific Reports, 7, Article No. 11745. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sato, J., Kanazawa, A., Ikeda, F., et al. (2014) Gut Dysbiosis and Detection of “Live Gut Bacteria” in Blood of Japanese Patients with Type 2 Diabetes. Diabetes Care, 37, 2343-2350. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, J., Zhao, F., Wang, Y., et al. (2017) Gut Microbiota Dysbiosis Contrib-utes to the Development of Hypertension. Microbiome, 5, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yin, J., Liao, S.-X., He, Y., et al. (2015) Dysbiosis of Gut Mi-crobiota with Reduced Trimethylamine-N-Oxide Level in Patients with Large-Artery Atherosclerotic Stroke or Transient Ischemic Attack. Journal of the American Heart Association, 4, e002699. [Google Scholar] [CrossRef]
|
|
[22]
|
Zeng, X., Gao, X., Peng, Y., et al. (2019) Higher Risk of Stroke Is Correlated with Increased Opportunistic Pathogen Load and Reduced Levels of Butyrate-Producing Bacteria in the Gut. Frontiers in Cellular and Infection Microbiology, 9, Article 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Litvak, Y., Byndloss, M.X., Tsolis, R.M. and Bäumler, A.J. (2017) Dysbiotic Proteobacteria Expansion: A Microbial Signature of Epithelial Dysfunction. Current Opinion in Microbiology, 39, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Winter, S.E., Winter, M.G., Xavier, M.N., et al. (2013) Host-Derived Nitrate Boosts Growth of E. coli in the Inflamed Gut. Science, 339, 708-711. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bourassa, M.W., Alim, I., Bultman, S.J. and Ratan, R.R. (2016) Bu-tyrate, Neuroepigenetics and the Gut Microbiome: Can a High Fiber Diet Improve Brain Health? Neuroscience Letters, 625, 56-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, Z., Yi, C.-X., Katiraei, S., et al. (2018) Butyrate Reduces Ap-petite and Activates Brown Adipose Tissue via the Gut-Brain Neural Circuit. Gut, 67, 1269-1279. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Byndloss, M.X., Olsan, E.E., Rivera-Chavez, F., et al. (2017) Microbiota-Activated Ppar-γ Signaling Inhibits Dysbiotic Enterobacteriaceae Expansion. Science, 357, 570-575. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Singh, V., Roth, S., Llovera, G., et al. (2016) Microbiota Dysbiosis Controls the Neuroinflammatory Response after Stroke. Journal of Neuroscience, 36, 7428-7440. [Google Scholar] [CrossRef]
|
|
[29]
|
Chen, Y., Liang, J., Ouyang, F., et al. (2019) Persistence of Gut Microbiota Dysbiosis and Chronic Systemic Inflammation after Cerebral Infarction in Cynomolgus Monkeys. Frontiers in Neurology, 10, Article 661. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gophna, U., Konikoff, T. and Nielsen, H.B. (2017) Oscillospira and Related Bacteria—From Metagenomic Species to Metabolic Features. Environmental Microbiology, 19, 835-841. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Chesnokova, V., Pechnick, R.N. and Wawrowsky, K. (2016) Chronic Peripheral Inflammation, Hippocampal Neurogenesis, and Behavior. Brain, Behavior, and Immunity, 58, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Liu, Z., Lu, W., Gao, L., et al. (2022) Protocol of End-PSCI Trial: A Multicenter, Randomized Controlled Trial to Evaluate the Effects of DL-3-N-Butylphthalide on Delayed-Onset Post Stroke Cognitive Impairment. BMC Neurology, 22, Article No. 435. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
del Carmen, S., Miyoshi, A., Azevedo, V., de LeBlanc, A.M. and LeBlanc, J.G. (2015) Evaluation of a Streptococcus thermophilus Strain with Innate Anti-Inflammatory Properties as a Vehicle for IL-10 cDNA Delivery in an Acute Colitis Model. Cytokine, 73, 177-183. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Dénes, Á., Ferenczi, S. and Kovács, K.J. (2011) Systemic Inflam-matory Challenges Compromise Survival after Experimental Stroke via Augmenting Brain Inflammation, Blood-Brain Barrier Damage and Brain Oedema Independently of Infarct Size. Journal of Neuroinflammation, 8, Article No. 164. [Google Scholar] [CrossRef] [PubMed]
|