|
[1]
|
中国高血压防治指南2018年修订版[J]. 心脑血管病防治, 2019, 19(1): 1-44.
|
|
[2]
|
Wang, Z., Chen, Z., Zhang, L., et al. (2018) Status of Hypertension in China: Results from the China Hypertension Survey, 2012-2015. Circulation, 137, 2344-2356. [Google Scholar] [CrossRef]
|
|
[3]
|
荣海艳, 胡红娟. 中青年体检人群高血压前期流行现状及高风险因素分析[J]. 中国社区医师, 2022, 38(7): 146-148.
|
|
[4]
|
Whelton, P.K., Carey, R.M., Aronow, W.S., et al. (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/ NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension (Dallas, Tex.: 1979), 71, e13-e115. [Google Scholar] [CrossRef]
|
|
[5]
|
Henning, R.J. (2021) Cardio-vascular Exosomes and MicroRNAs in Cardiovascular Physiology and Pathophysiology. Journal of Cardiovascular Translational Research, 14, 195-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Çakmak, H.A. and Demir, M. (2020) MicroRNA and Cardiovascular Diseases. Balkan Medical Journal, 37, 60-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Sekar, D., Shilpa, B.R. and Das, A.J. (2017) Relevance of microRNA 21 in Different Types of Hypertension. Current Hypertension Reports, 19, Article No. 57. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Li, X., Wei, Y. and Wang, Z. (2018) microRNA-21 and Hyper-tension. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 41, 649-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Watanabe, K., Narumi, T., Watanabe, T., et al. (2020) The Associ-ation between microRNA-21 and Hypertension-Induced Cardiac Remodeling. PLOS ONE, 15, e0226053. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, Y., et al. (2022) The Relationship between Serum miR-21 Levels and Left Atrium Dilation in Elderly Patients with Essential Hypertension. Journal of Geriatric Cardiology: JGC, 19, 833-842.
|
|
[11]
|
Konukoglu, D. and Uzun, H. (2017) Endothelial Dysfunction and Hypertension. Advances in Experimental Medicine and Biology, 956, 511-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Shi, N., Mei, X. and Chen, S.Y. (2019) Smooth Muscle Cells in Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Bi-ology, 39, e247-e252. [Google Scholar] [CrossRef]
|
|
[13]
|
Shang, F., Guo, X., Chen, Y., et al. (2022) Endothelial MicroRNA-483-3p Is Hypertension-Protective. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 3698219. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chu, H.T., Li, L., Jia, M., et al. (2020) Correlation between Serum microRNA-136 Levels and RAAS Biochemical Markers in Patients with Essential Hypertension. Euro-pean Review for Medical and Pharmacological Sciences, 24, 11761-11767.
|
|
[15]
|
Huang, Y.Q., Huang, C., Zhang, B., et al. (2020) Association of Circulating miR-155 Expression Level and Inflammatory Markers with White Coat Hyperten-sion. Journal of Human Hypertension, 34, 397-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Huang, Y.Q., Huang, C., Chen, J.Y., et al. (2016) The Associa-tion of Circulating miR-30a, miR-29 and miR-133 with White-Coat Hypertension. Biomarkers in Medicine, 10, 1231-1239. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cengiz, M., Karatas, O.F., Koparir, E., et al. (2015) Dif-ferential Expression of Hypertension-Associated microRNAs in the Plasma of Patients with White Coat Hypertension. Medicine, 94, e693. [Google Scholar] [CrossRef]
|
|
[18]
|
Matshazi, D.M., Weale, C.J., Erasmus, R.T., et al. (2021) Circulating Levels of MicroRNAs Associated with Hypertension: A Cross-Sectional Study in Male and Female South African Participants. Frontiers in Genetics, 12, Article ID: 710438. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Marques, F.Z. and Charchar, F.J. (2015) microRNAs in Essential Hypertension and Blood Pressure Regulation. Advances in Experimental Medicine and Biology, 888, 215-235. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Golonka, R.M., Cooper, J.K., Issa, R., et al. (2021) Impact of Nutritional Epigenetics in Essential Hypertension: Targeting microRNAs in the Gut-Liver Axis. Current Hypertension Reports, 23, Article No. 28. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ouyang, Y., Wu, H., Tan, A., et al. (2015) E-selectin Gene Polymorphism (A561C) and Essential Hypertension. Meta-Analysis in the Chinese Population. Herz, 40, 197-202. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Srivastava, K., Chandra, S., Narang, R., et al. (2018) E-selectin Gene in Essential Hypertension: A Case-Control Study. European Journal of Clinical Investigation, 48, e12868. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Burnett, J.C. (2006) Novel Therapeutic Directions for the Natriuretic Pep-tides in Cardiovascular Diseases: What’s on the Horizon. Journal of Cardiology, 48, 235-241.
|
|
[24]
|
Chen, Y.L., Daneva, Z., Kuppusamy, M., et al. (2022) Novel Smooth Muscle Ca2+-Signaling Nanodomains in Blood Pressure Regulation. Circulation, 146, 548-564. [Google Scholar] [CrossRef]
|
|
[25]
|
Kuang, D.B., Zhou, J.P., Li, M.P., et al. (2017) Association of NPR3 Polymorphism with Risk of Essential Hypertension in a Chinese Pop-ulation. Journal of Clinical Pharmacy and Therapeutics, 42, 554-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liu, X., Jiang, C. and Yang, P. (2017) Association of Single Nucleotide Polymorphisms in the 5’ Upstream Region of the C4BPA Gene with Essential Hypertension in a Northeastern Han Chi-nese Population. Molecular Medicine Reports, 16, 1289-1297. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Mei, X.F., Hu, S.D., Liu, P.F., et al. (2020) ALDH2 Gene rs671 Polymorphism May Decrease the Risk of Essential Hyper-tension. International Heart Journal, 61, 562-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sharma, S., Ruffenach, G., Umar, S., et al. (2016) Role of Oxidized Lipids in Pulmonary Arterial Hypertension. Pulmonary Circulation, 6, 261-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
O’brien, P.J., Siraki, A.G. and Shangari, N. (2005) Aldehyde Sources, Metabolism, Molecular Toxicity Mechanisms, and Possible Effects on Human Health. Critical Reviews in Tox-icology, 35, 609-662. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhang, J., Guo, Y., Zhao, X., et al. (2023) The Role of Alde-hyde Dehydrogenase 2 in Cardiovascular Disease. Nature Reviews Cardiology, 20, 495-509. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, D., Zou, Y., Yu, S., et al. (2020) The Effect of ALDH2 rs671 Gene Mutation on Clustering of Cardiovascular Risk Factors in a Big Data Study of Chinese Population: Associa-tions Differ between the Sexes. BMC Cardiovascular Disorders, 20, Article No. 509. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wang, Y., Zhang, Y., Zhang, J., et al. (2013) Association of a Functional Single-Nucleotide Polymorphism in the ALDH2 Gene with Essential Hypertension Depends on Drinking Behavior in a Chinese Han Population. Journal of Human Hypertension, 27, 181-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ma, C., Yu, B., Zhang, W., et al. (2017) Associations between Aldehyde Dehydrogenase 2 (ALDH2) rs671 Genetic Polymorphisms, Lifestyles and Hypertension Risk in Chinese Han People. Scientific Reports, 7, Article No. 11136. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zheng, Y., Ning, C., Zhang, X., et al. (2020) Association be-tween ALDH-2 rs671 and Essential Hypertension Risk or Blood Pressure Levels: A Systematic Review and Me-ta-Analysis. Frontiers in Genetics, 11, Article No. 685. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Benjafield, A.V., Jeyasingam, C.L., Nyholt, D.R., et al. (1998) G-Protein beta3 Subunit Gene (GNB3) Variant in Causation of Essential Hypertension. Hypertension (Dallas, Tex.: 1979), 32, 1094-1097. [Google Scholar] [CrossRef]
|
|
[36]
|
Siffert, W. (2003) G-Protein beta3 Subunit 825T Allele and Hy-pertension. Current Hypertension Reports, 5, 47-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zheng, H., Xu, H., Cui, B., et al. (2013) Association between Polymorphism of the G-Protein β3 Subunit C825T and Essential Hypertension: An Updated Meta-Analysis Involving 36,802 Subjects. Biological Research, 46, 265-273. [Google Scholar] [CrossRef]
|
|
[38]
|
Gbadoe, K.M., Berdouzi, N., Aguiñano, A.A.A., et al. (2016) Cardiovascular Diseases-Related GNB3 C825T Polymorphism Has a Significant Sex-Specific Effect on Serum Soluble E-selectin Levels. Journal of Inflammation (London, England), 13, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Bagos, P.G., Elefsinioti, A.L., Nikolopoulos, G.K., et al. (2007) The GNB3 C825T Polymorphism and Essential Hypertension: A Meta-Analysis of 34 Studies Including 14,094 Cases and 17,760 Controls. Journal of Hypertension, 25, 487-500. [Google Scholar] [CrossRef]
|
|
[40]
|
付凌雨, 金辉, 时玥, 等. 中国汉族原发性高血压患者G蛋白β3亚单位825C/T多态性Meta分析[J]. 中国全科医学, 2008(16): 1439-1441.
|
|
[41]
|
宋洁, 鲁双, 高晓红, 等. 牡丹江地区汉族及朝鲜族高血压人群中G蛋白β3亚单位825C/T的多态性[J]. 中国组织工程研究与临床康复, 2011, 15(50): 9491-9495.
|
|
[42]
|
李小溪, 阿衣古丽∙玉努斯, 黄静静, 等. G蛋白β3亚单位基因C825T多态性与高血压维医分型的关系[J]. 中国中西医结合杂志, 2014, 34(3): 297-302.
|
|
[43]
|
Backes, C., Sedaghat-Hamedani, F., Frese, K., et al. (2016) Bias in High-Throughput Analysis of miRNAs and Implications for Biomarker Studies. Analytical Chemistry, 88, 2088-2095. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hofmann, S., Huang, Y., Paulicka, P., et al. (2015) Dou-ble-Stranded Ligation Assay for the Rapid Multiplex Quantification of MicroRNAs. Analytical Chemistry, 87, 12104-12111. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Liu, Q., Shin, Y., Kee, J.S., et al. (2016) Corri-gendum to “Mach-Zehnder Interferometer (MZI) Point-of-Care System for Rapid Multiplexed Detection of microRNAs in Human Urine Specimens” [Biosens. Bioelectron. 71 (2015) 365-372]. Biosensors & Bioelectronics, 85, 996. [Google Scholar] [CrossRef] [PubMed]
|