|
[1]
|
World Health Organization (2018) Global Tuberculosis Report 2018.
|
|
[2]
|
World Health Organization (2019) Global Tuberculosis Report 2019.
|
|
[3]
|
Narasimhan, P., Wood, J., Macintyre, C.R. and Mathai, D. (2013) Risk Factors for Tu-berculosis. Pulmonary Medicine, 2013, Article ID: 828939. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bhatt, K. and Salgame, P. (2007) Host Innate Immune Response to Mycobacterium Tuberculosis. Journal of Clinical Immunology, 27, 347-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Liu, P.T. and Modlin, R.L. (2008) Human Macrophage Host Defense against Mycobacterium Tuberculosis. Current Opinion in Immunology, 20, 371-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Frahm, M., Goswami, N., Owzar, K., et al. (2011) Discriminating between Latent and Active Tuberculosis with Multiple Biomarker Responses. Tuberculosis, 91, 250-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lin, J., Li, J., Huang, B., et al. (2015) Review Article Exosomes: Novel Biomarkers for Clinical Diagnosis. The Scientific World Journal, 2015, Article ID: 657086. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Raposo, G. and Stoorvogel, W. (2013) Extracellular Vesicles: Exosomes, Microvesicles, and Friends. Journal of Cell Biology, 200, 373-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cheng, L., Sharples, R., Scicluna, B.J. and Hill, A.F. (2014) Exosomes Provide a Protective and Enriched Source of miRNA for Biomarker Profiling Compared to Intracellular and Cell-Free Blood. Journal of Extracellular Vesicles, 3, Article 23743. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mathivanan, S. and Simpson, R.J. (2009) ExoCarta: A Compendium of Exosomal Proteins and RNA. Proteomics, 9, 4997-5000. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Tickner, J.A., Urquhart, A.J., Stephenson, S.A., Richard, D.J. and O’Byrne, K.J. (2014) Functions and Therapeutic Roles of Exosomes in Cancer. Frontiers in Oncology, 4, Article 127. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sun, T., Kalionis, B., Lv, G.Y., Xia, S.J. and Gao, W. (2015) Role of Exosomal Noncoding RNAs in Lung Carcinogenesis. Biomed Research International, 2015, Article ID 125807. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Eldh, M. (2013) Exosomes and Exosomal RNA—A Way of Cell-to-Cell Communication. Master’s Thesis, Sahlgrenska Academy at University of Gothenburg, Göteborg.
|
|
[14]
|
Drain, P.K., Ba-jema, K.L., Dowdy, D., et al. (2018) Incipient and Subclinical Tuberculosis: A Clinical Review of Early Stages and Pro-gression of Infection. Clinical Microbiology Reviews, 31. [Google Scholar] [CrossRef]
|
|
[15]
|
Abel, L., Fellay, J., Haas, D., et al. (2018) Genetics of Human Susceptibility to Active and Latent Tuberculosis: Present Knowledge and Future Perspectives. The Lancet Infectious Diseases, 18, E64-E75. [Google Scholar] [CrossRef]
|
|
[16]
|
Guo, W.R., Li, J.T., Pan, X., Wei, L.P. and Wu, J.Y. (2010) Candidate Mycobacterium Tuberculosis Genes Targeted by Human MicroRNAs. Protein & Cell, 1, 419-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Bhatnagar, S. and Schorey, J. (2007) Exosomes Released from Infected Macrophages Contain Mycobacterium avium Glycopeptidolipids and Are Proinflammatory. Journal of Biologi-cal Chemistry, 282, 25779-25789. [Google Scholar] [CrossRef]
|
|
[18]
|
Bhatnagar, S., Shinagawa, K., Castellino, F. and Schorey, J.S. (2007) Exosomes Released from Macrophages Infected with Intracellular Pathogens Stimulate a Proinflammatory Response in vitro and in vivo. Blood, 110, 3234-3244. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Giri, P.K. and Schorey, J.S. (2008) Exosomes Derived from M. bovis BCG Infected Macrophages Activate Antigen- Specific CD4+ and CD8+ T Cells in Vitro and in Vivo. PLOS ONE, 3, e2461. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ramachandra, L., Qu, Y., Wang, Y., et al. (2010) Mycobacte-rium Tuberculosis Synergizes with ATP to Induce Release of Microvesicles and Exosomes Containing Major Histo-compatibility Complex Class II Molecules Capable of Antigen Presentation. Infection and Immunity, 78, 5116-5125. [Google Scholar] [CrossRef]
|
|
[21]
|
Giri, P.K., Kruh, N.A., Dobos, K.M. and Schorey, J.S. (2010) Proteo-mic Analysis Identifies Highly Antigenic Proteins in Exosomes from M. tuberculosis-Infected and Culture Filtrate Pro-tein-Treated Macrophages. Proteomics, 10, 3190- 3202. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kruh-Garcia, N.A., Schorey, J.S. and Dobos, K.M. (2012) Exosomes: New Tuberculosis Biomarkers Prospects from the Bench to the Clinic. In: Cardona, P.J., Ed., Understanding Tuberculosis, 395-410.
|
|
[23]
|
Anand, P., Anand, E., Bleck, C., Anes, E. and Griffiths, G. (2010) Exosomal Hsp70 Induces a Pro-Inflammatory Response to Foreign Particles Including Myco-bacteria. PLOS ONE, 5, e10136. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Singh, P.P., Lemaire, C., Tan, J.C., Zeng, E.L. and Schorey, J.S. (2011) Exosomes Released from M. tuberculosis Infected Cells Can Suppress IFN-γ Mediated Activation of Naïve Macrophages. PLOS ONE, 6, e18564. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pieters, J. (2008) Mycobacterium Tuberculosis and the Macro-phage: Maintaining a Balance. Cell Host & Microbe, 3, 399-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Banerjee, J., Roy, S., Dhas, Y. and Mishra, N. (2019) Senes-cence-Associated miR-34a and miR-126 in Middle-Aged Indians with Type 2 Diabetes. Clinical and Experimental Medi-cine, 20, 149-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gareev, I., Beylerli, O., Yang, G., et al. (2020) The Current State of MiRNAs as Biomarkers and Therapeutic Tools. Clinical and Experimental Medicine, 20, 349-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Hu, Y., Lan, W. and Miller, D. (2017) Next-Generation Se-quencing for MicroRNA Expression Profile. In: Huang, J., et al. Eds., Bioinformatics in MicroRNA Research, Humana Press, New York, 169-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhou, X.H., Fang, S.Q., Wang, M., et al. (2019) Diagnostic Value of Circulating miRNA-122 for Hepatitis B Virus and/or Hepatitis C Virus-Associated Chronic Viral Hepatitis. Bi-oscience Reports, 39, BSR20190900. [Google Scholar] [CrossRef]
|
|
[30]
|
Peng, Z.L., Chen, L. and Zhang, H. (2020) Serum Proteomic Analysis of Mycobacterium Tuberculosis Antigens for Discriminating Active Tuberculosis from Latent Infection. Journal of In-ternational Medical Research, 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ma, F., Xu, S., Liu, X.G., et al. (2011) The microRNA miR-29 Controls Innate and Adaptive Immune Responses to Intracellular Bacterial Infection by Targeting Interferon-γ. Nature Immunology, 12, 861-869. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lin, J., Wang, Y., Zou, Y.Q., et al. (2016) Differential miRNA Expression in Pleural Effusions Derived from Extracellular Vesicles of Patients with Lung Cancer, Pulmonary Tuberculosis, or Pneu-monia. Tumor Biology, 37, 15835- 15845. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Dale, G. and Noren-berg, S. (1989) Time-Dependent Loss of Adenosine S’-Monophosphate Deaminase Activity May Explain Elevated Adenosine 5’-Triphosphate Levels in Senescent Erythrocytes. Blood, 74, 2157-2160.
|
|
[34]
|
Zhang, D.F., Yi, Z. and Fu, Y.R. (2018) Downregulation of miR-20b-5p Facilitates Mycobacterium tuberculosis Survival in RAW 264.7 Macro-phages via Attenuating the Cell Apoptosis by Mcl-1 Upregulation. Journal of Cellular Biochemistry, 120, 5889-5896. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Morin, R.D., Bainbridge, M., Fejes, A., et al. (2008) Profiling the HeLa S3 Transcriptome Using Randomly Primed cDNA and Massively Parallel Short-Read Sequencing. BioTechniques, 45, 81-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Thomson, J.M., Parker, J., Perou, C. and Hammond, S.M. (2004) A Custom Microarray Platform for Analysis of microRNA Gene Expression. Nature Methods, 1, 47-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chen, C.F., Ridzon, D., Broomer, A., et al. (2005) Real-Time Quantification of microRNAs by Stem-Loop RT-PCR. Nucleic Acids Research, 33, e179. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Schwarzenbach, H., da Silva, A.M., Calin, G. and Pantel, K. (2015) Data Normalization Strategies for MicroRNA Quantification. Clinical Chemistry, 61, 1333-1342. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Faraldi, M., Gomarasca, M., Sansoni, V., et al. (2019) Nor-malization Strategies Differently Affect Circulating miRNA Profile Associated with the Training Status. Scientific Reports, 9, Article No. 1584. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Benz, F., Roderburg, C., Vargas Cardenas, D., et al. (2013) U6 Is Unsuitable for Normalization of Serum miRNA Levels in Patients with Sepsis or Liver Fibrosis. Experimental & Mo-lecular Medicine, 45, e42. [Google Scholar] [CrossRef] [PubMed]
|