|
[1]
|
Asrani, S.K., Devarbhavi, H., Eaton, J., et al. (2019) Burden of Liver Diseases in the World. Journal of Hepatology, 70, 151-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Xiao, J., Wang, F., Wong, N.K., et al. (2019) Global Liver Disease Burdens and Research Trends: Analysis from a Chinese Perspective. Journal of Hepatology, 71, 212-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Park, H.J., Park, B. and Lee, S.S. (2020) Radiomics and Deep Learning: Hepatic Applications. Korean Journal of Radiology, 21, 387-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Guo, X., Schwartz, L.H. and Zhao, B. (2019) Automatic Liver Seg-mentation by Integrating Fully Convolutional Networks into Active Contour Models. Medical Physics, 46, 4455-4469. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhou, X. (2020) Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches. Advances in Experimental Medicine and Biology, 1213, 135-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chan, H.P., Samala, R.K., Hadjiiski, L.M., et al. (2020) Deep Learning in Medical Image Analysis. Advances in Experimental Medicine and Biology, 1213, 3-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ellahham, S. (2020) Artificial Intelligence: The Future for Dia-betes Care. The American Journal of Medicine, 133, 895- 900. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chaudhary, K., Poirion, O.B., Lu, L., et al. (2018) Deep Learn-ing-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clinical Cancer Research, 24, 1248-1259. [Google Scholar] [CrossRef]
|
|
[9]
|
Poirion, O.B., Jing, Z., Chaudhary, K., et al. (2021) DeepProg: An Ensemble of Deep-Learning and Machine-Learning Models for Prognosis Prediction Using Mul-ti-Omics Data. Genome Medicine, 13, Article No. 112. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Adler, J.T., Yeh, H., Markmann, J.F., et al. (2015) Market Competition and Density in Liver Transplantation: Relationship to Volume and Outcomes. Journal of the American Col-lege of Surgeons, 221, 524-531. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Verbeek, T.A., Saner, F.H. and Bezinover, D. (2022) Hy-ponatremia and Liver Transplantation: A Narrative Review. Journal of Cardiothoracic and Vascular Anesthesia, 36, 1458-1466. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
徐兆慧, 闫淯淳, 杨洋, 等. CT测量残肝比在肝母细胞瘤患儿术前评估中的应用[J]. 中国医学影像技术, 2019, 35(5): 716-719.
|
|
[13]
|
Mizutani, Y., Hirai, T., Naga-machi, S., et al. (2018) Prediction of Posthepatectomy Liver Failure Proposed by the International Study Group of Liver Surgery: Residual Liver Function Estimation with 99mTc-Galactosyl Human Serum Albumin Scintigraphy. Clinical Nu-clear Medicine, 43, 77-81. [Google Scholar] [CrossRef]
|
|
[14]
|
Sapisochin, G., Goldaracena, N., Laurence, J.M., et al. (2016) Right Lobe Living-Donor Hepatectomy—The Toronto Approach, Tips and Tricks. Hepato-biliary Surgery and Nutrition, 5, 118-126.
|
|
[15]
|
Reichman, T.W., Sandroussi, C., Azouz, S.M., et al. (2011) Living Do-nor Hepatectomy: The Importance of the Residual Liver Volume. Liver Transplantation, 17, 1404-1411. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Pattanayak, P., Turkbey, E.B. and Summers, R.M. (2017) Comparative Eval-uation of Three Software Packages for Liver and Spleen Segmentation and Volumetry. Academic Radiology, 24, 831-839. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Le, D.C., Chinnasarn, K., Chansangrat, J., et al. (2021) Semi-Automatic Liver Segmentation Based on Probabilistic Models and Anatomical Constraints. Scientific Reports, 11, Article No. 6106. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Noschinski, L.E., Maiwald, B., Voigt, P., et al. (2015) Validat-ing New Software for Semiautomated Liver Volumetry—Better than Manual Measurement? Rofo, 187, 788-794. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kavur, A.E., Gezer, N.S., Barış, M., et al. (2020) Comparison of Semi-Automatic and Deep Learning-Based Automatic Methods for Liver Segmentation in Living Liver Transplant Do-nors. Diagnostic and Interventional Radiology, 26, 11-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, H., Chen, T.W., Li, Z.L., et al. (2015) Albumin and Magnetic Resonance Imaging-Liver Volume to Identify Hepatitis B-Related Cirrhosis and Esophageal Varices. World Journal of Gastroenterology, 21, 988-996. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kim, D.W., Ha, J., Lee, S.S., et al. (2021) Population-Based and Per-sonalized Reference Intervals for Liver and Spleen Volumes in Healthy Individuals and Those with Viral Hepatitis. Radi-ology, 301, 339-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
de Padua, V., Alves, V., Dillman, J.R., Somasundaram, E., et al. (2023) Computed Tomography-Based Measurements of Normative Liver and Spleen Volumes in Children. Pediatric Ra-diology, 53, 378-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Furusato Hunt, O.M., Lubner, M.G., Ziemlewicz, T.J., et al. (2016) The Liver Segmental Volume Ratio for Noninvasive Detection of Cirrhosis: Comparison with Established Linear and Volumetric Measures. Journal of Computer Assisted Tomography, 40, 478-484. [Google Scholar] [CrossRef]
|
|
[24]
|
Martí-Aguado, D., Jiménez-Pastor, A., Alberich-Bayarri, Á., et al. (2022) Automated Whole-Liver MRI Segmentation to Assess Steatosis and Iron Quantification in Chronic Liver Disease. Radiology, 302, 345-354. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Cunha, G.M. and Fowler, K.J. (2022) Automated Liver Segmenta-tion for Quantitative MRI Analysis. Radiology, 302, 355-356. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhou, B., Augenfeld, Z., Chapiro, J., et al. (2021) Anato-my-Guided Multimodal Registration by Learning Segmentation without Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and Registration. Medical Image Analysis, 71, Article ID: 102041. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Dou, Q., Yu, L., Chen, H., et al. (2017) 3D Deeply Supervised Network for Automated Segmentation of Volumetric Medical Images. Medical Image Analysis, 41, 40-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sosna, J. (2022) Deep Learning for Automated Normal Liver Volume Estimation. Radiology, 302, 343-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, J., Zhang, X., Lv, P., et al. (2022) Automatic Liver Seg-mentation Using EfficientNet and Attention-Based Residual U-Net in CT. Journal of Digital Imaging, 35, 1479-1493. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Takenaga, T., Hanaoka, S., Nomura, Y., et al. (2019) Four-Dimensional Fully Convolutional Residual Network-Based Liver Segmentation in Gd-EOB-DTPA-Enhanced MRI. The International Journal for Computer Assisted Radiology and Surgery, 14, 1259-1266. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Cancian, P., Cortese, N., Donadon, M., et al. (2021) Develop-ment of a Deep-Learning Pipeline to Recognize and Characterize Macrophages in Colo-Rectal Liver Metastasis. Cancers (Basel), 13, Article No. 3313. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Peng, Q., Yan, Y., Qian, L., et al. (2022) Liver Tumor Segmentation and Classification Using FLAS-UNet++ and an Improved DenseNet. Technology and Health Care, 30, 1475-1487. [Google Scholar] [CrossRef]
|
|
[33]
|
Huang, Q., Sun, J., Ding, H., et al. (2018) Robust Liver Vessel Extrac-tion Using 3D U-Net with Variant Dice Loss Function. Computers in Biology and Medicine, 101, 153-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Tang, X., Jafargholi Rangraz, E., Coudyzer, W., et al. (2020) Whole Liver Segmentation Based on Deep Learning and Manual Adjustment for Clinical Use in SIRT. European Journal of Nuclear Medicine and Molecular Imaging, 47, 2742-2752. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ahmad, M., Qadri, S.F., Ashraf, M.U., et al. (2022) Efficient Liver Segmentation from Computed Tomography Images Using Deep Learning. Computational Intelligence and Neuro-science, 2022, Article ID: 2665283. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lee, Z., Qi, S., Fan, C., et al. (2022) RA V-Net: Deep Learning Net-work for Automated Liver Segmentation. Physics in Medicine & Biology, 67, Article ID: 125022. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chen, Y., Zheng, C., Hu, F., et al. (2022) Efficient Two-Step Liver and Tumour Segmentation on Abdominal CT via Deep Learning and a Conditional Random Field. Computers in Biology and Medicine, 150, Article ID: 106076. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ahn, Y., Yoon, J.S., Lee, S.S., et al. (2020) Deep Learn-ing Algorithm for Automated Segmentation and Volume Measurement of the Liver and Spleen Using Portal Venous Phase Computed Tomography Images. Korean Journal of Radiology, 21, 987-997. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Perez, A.A., Noe-Kim, V., Lubner, M.G., et al. (2022) Deep Learning CT-based Quantitative Visualization Tool for Liver Volume Estimation: Defining Normal and Hepatomegaly. Radiology, 302, 336-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Mojtahed, A., Núñez, L., Connell, J., et al. (2022) Repeatability and Reproducibility of Deep-Learning-Based Liver Volume and Couinaud Segment Volume Measurement Tool. Ab-dominal Radiology (NY), 47, 143-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Fang, X., Xu, S., Wood, B.J., et al. (2020) Deep Learning-Based Liver Segmentation for Fusion-Guided Intervention. The International Journal for Computer Assisted Radiology and Surgery, 15, 963-972. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Alirr, O.I. (2020) Deep Learning and Level Set Approach for Liver and Tumor Segmentation from CT Scans. Journal of Applied Clinical Medical Physics, 21, 200-209. [Google Scholar] [CrossRef] [PubMed]
|