摘要: 考察二阶半正 Dirichlet 边值问题

正解的存在性与多解性,其中入为正参数,f∈C([0,∞),[0,∞)),存在∧> 0,使得∈∈[0,∧]。当f 满足

时,运用不动点指数理论和上下解方法证明了存在常数λ
∗ > 0,使得当λ>λ
∗时,问题(P) 至少存在两个正解。
Abstract:
In this paper,we are considered with the existence and multiplicity of positive solutions for second-order Dirichlet boundary value problems

where λ is a positive parameter, f∈C([0,∞),[0,∞)), there exists ∧> 0, such that ∈∈[0,∧]. When f satisfies

, we apply a fixed point index theorem and the method of the upper and lower solutions to prove that there exists λ
∗ > 0 such that the problem (P) has at least two positive solutions for λ>λ
∗.