[1]
|
陈琴花. Syndecan4调控生理性心肌肥大机制研究[D]: [博士学位论文]. 南京: 南京大学, 2019.
|
[2]
|
Oldfield, C.J., Duhamel, T.A. and Dhalla, N.S. (2020) Mechanisms for the Transition from Physiological to Pathological Cardiac Hy-pertrophy. Canadian Journal of Physiology and Pharmacology, 98, 74-84.
https://doi.org/10.1139/cjpp-2019-0566
|
[3]
|
李青, 胡斌, 牛鑫, 等. MiR-30e调控心肌肥厚的作用机制研究[J]. 现代生物医学进展, 2013, 13(20): 3804-3806+3813.
|
[4]
|
Li, Q., Song, X.W., Zou, J., et al. (2010) Attenuation of mi-croRNA-1 Derepresses the Cytoskeleton Regulatory Protein Twinfilin-1 to Provoke Cardiac Hypertrophy. Journal of Cell Science, 123, 2444-2452.
https://doi.org/10.1242/jcs.067165
|
[5]
|
王微微. 长链非编码RNA Kcnq1ot1作为miR-30e-5p分子海绵通过调控ADAM9表达来调控心肌肥厚[D]: [硕士学位论文]. 沈阳: 中国医科大学, 2021.
|
[6]
|
Wang, W., Wu, C., Ren, L., et al. (2020) MiR-30e-5p Is Sponged by Kcnq1ot1 and Represses Angiotensin II-Induced Hypertrophic Phenotypes in Cardiomyocytes by Targeting ADAM9. Experimental Cell Research, 394, Article ID: 112140. https://doi.org/10.1016/j.yexcr.2020.112140
|
[7]
|
Hunter, J.J. (1999) Signaling Pathways for Cardiac Hypertrophy and Failure. The New England Journal of Medicine, 341, 1276-1283. https://doi.org/10.1056/NEJM199910213411706
|
[8]
|
刘永国, 任澎. 心肌缺血/再灌注损伤的机制研究进展[J]. 医学综述, 2010, 16(21): 3267-3269.
|
[9]
|
Cheng, N., Li, L., Wu, Y., et al. (2021) microRNA-30e Up-Regulation Alle-viates Myocardial Ischemia-Reperfusion Injury and Promotes Ventricular Remodeling via SOX9 Repression. Molecular Immunology, 130, 96-103.
https://doi.org/10.1016/j.molimm.2020.11.009
|
[10]
|
Jayasankar, V., Woo, Y.J., Pirolli, T.J., Bish, L.T. and Berry, M.F. (2005) Induction of Angiogenesis and Inhibition of Apoptosis by Hepatocyte Growth Factor Effectively Treats Postischemic Heart Failure. Journal of Cardiac Surgery, 20, 93-101. https://doi.org/10.1111/j.0886-0440.2005.200373.x
|
[11]
|
Su, B., Wang, X., Sun, Y., et al. (2020) miR-30e-3p Promotes Cardiomyocyte Autophagy and Inhibits Apoptosis via Regulating Egr-1 during Ischemia/Hypoxia. BioMed Research International, 2020, Article ID: 7231243.
https://doi.org/10.1155/2020/7231243
|
[12]
|
Wang, X.T., Wu, X.D., Lu, Y.X., et al. (2017) Potential Involvement of MiR-30e-3p in Myocardial Injury Induced by Coronary Microembolization via Autophagy Activation. Cellular Physiol-ogy and Biochemistry, 44, 1995-2004.
https://doi.org/10.1159/000485905
|
[13]
|
Mo, B., Wu, X., Wang, X., et al. (2019) miR-30e-5p Mitigates Hypox-ia-Induced Apoptosis in Human Stem Cell-De- rived Cardiomyocytes by Suppressing Bim. International Journal of Bi-ological Sciences, 15, 1042-1051.
https://doi.org/10.7150/ijbs.31099
|
[14]
|
Chen, Y., Yin, Y. and Jiang, H. (2021) miR-30e-5p Alleviates Inflamma-tion and Cardiac Dysfunction after Myocardial Infarction through Targeting PTEN. Inflammation, 44, 769-779. https://doi.org/10.1007/s10753-020-01376-w
|
[15]
|
Pu, L.M., Kong, X.Y., Li, H. and He, X. (2021) Exosomes Re-leased from Mesenchymal Stem Cells Overexpressing microRNA-30e Ameliorate Heart Failure in Rats with Myocardial Infarction. American Journal of Translational Research, 13, 4007-4025.
|
[16]
|
Marques, F.Z., Vizi, D., Khammy, O., et al. (2016) The Transcardiac Gradient of Cardio-microRNAs in the Failing Heart. European Journal of Heart Failure, 18, 1000-1008. https://doi.org/10.1002/ejhf.517
|
[17]
|
Ovchinnikova, E.S., Schmitter, D., Vegter, E.L., et al. (2016) Signature of Circulating microRNAs in Patients with Acute Heart Failure. European Journal of Heart Failure, 18, 414-423. https://doi.org/10.1002/ejhf.332
|
[18]
|
徐晓飞. 无创呼吸机治疗急性心力衰竭的疗效观察[J]. 中华全科医学, 2016, 14(10): 1669-1670+1728.
https://doi.org/10.16766/j.cnki.issn.1674-4152.2016.10.020
|
[19]
|
方圻, 王士雯, 宁田海, 等. 充血性心力衰竭诊断和治疗对策[J]. 中华心血管病杂志, 1995(2): 83-94.
|