|
[1]
|
Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Dai, X., Maskell, K. and Johnson, C. (2001) IPCC Climate Change: The Scientific Basis. Cambridge University Press, Cambridge, 365.
|
|
[2]
|
Royer, D.L., Berner, R.A., Montañez, I.P., Tabor, N.J. and Beerling, D.J. (2004) CO2 as a Primary Driver of Phanerozoic Climate. GSA Today, 14, 4-10. [Google Scholar] [CrossRef]
|
|
[3]
|
Stocker, T., Qin, D., Plattner, G., Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. (2013) IPCC, 2013: Summary for Policymakers in climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth As-sessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 119-158.
|
|
[4]
|
Monnin, E., Indermuhle, A., Dallenbach, A., Fluckiger, J., Stauffer, B., Stocker, T.F., Raynaud, D. and Barnola, J.M. (2001) Atmospheric CO2 Concentrations over the Last Glacial Termination. Science, 291, 112-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Berner, R.A. (1994) GEOCARB II: A Revised Model of At-mospheric CO2 over Phanerozoic Time. American Journal of Science, 294, 56-91. [Google Scholar] [CrossRef]
|
|
[6]
|
Berner, R.A. (2006) GEOCARBSULF: A Combined Model for Phaner-ozoic Atmospheric O2 and CO2. Geochimica et Cosmochimica Acta, 70, 5653-5664. [Google Scholar] [CrossRef]
|
|
[7]
|
Berner, R.A. and Kothavala, Z. (2001) GEOCARB III: A Revised Model of Atmospheric CO2 over Phanerozoic Time. American Journal of Science, 301, 182-204. [Google Scholar] [CrossRef]
|
|
[8]
|
Beerling, D.J. and Royer, D.L. (2011) Convergent Cenozoic CO2 His-tory. Nature Geoscience, 4, 418-420. [Google Scholar] [CrossRef]
|
|
[9]
|
Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J.-M., Siegenthaler, U., Raynaud, D., Jouzel, J., Fischer, H. and Kawamura, K. (2008) High-Resolution Carbon Dioxide Con-centration Record 650,000-800,000 Years before Present. Nature, 453, 379-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Myers, T.S., Tabor, N.J., Jacobs, L.L. and Mateus, O. (2012) Estimating Soil pCO2 Using Paleosol Carbonates: Implications for the Relationship between Primary Productivity and Faunal Rich-ness in Ancient Terrestrial Ecosystems. Paleobiology, 38, 585-604. [Google Scholar] [CrossRef]
|
|
[11]
|
Seki, O., Foster, G.L., Schmidt, D.N., Mackensen, A., Kawamura, K. and Pancost, R.D. (2010) Alkenone and Boron-Based Plio-cene pCO2 Records. Earth and Planetary Science Letters, 292, 201-211. [Google Scholar] [CrossRef]
|
|
[12]
|
Schubert, B.A. and Jahren, A.H. (2012) The Effect of Atmospheric CO2 Concentration on Carbon Isotope Fractionation in C3 Land Plants. Geochimica et Cosmochimica Acta, 96, 29-43. [Google Scholar] [CrossRef]
|
|
[13]
|
Royer, D. (2001) Stomatal Density and Stomatal Index as Indicators of Paleoatmospheric CO2 Concentration. Review of Palaeobotany and Palynology, 114, 1-28. [Google Scholar] [CrossRef]
|
|
[14]
|
Royer, D.L., Moynihan, K.M., McKee, M.L., Londoño, L. and Franks, P.J. (2019) Sensitivity of a Leaf Gas-Exchange Model for Estimating Paleoatmospheric CO2 Concentration. Climate of the Past, 15, 795-809. [Google Scholar] [CrossRef]
|
|
[15]
|
Woodward, F.I. (1987) Stomatal Numbers Are Sensitive to Increases in CO2 from Pre-Industrial Levels. Nature, 327, 617-618. [Google Scholar] [CrossRef]
|
|
[16]
|
Salisbury, E.J. (1997) I. On the Causes and Ecological Significance of Stomatal Frequency, with Special Reference to the Woodland Flora. Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 216, 1-65. [Google Scholar] [CrossRef]
|
|
[17]
|
Poole, I.K.W. (1999) Stomatal Density and Index: The Practice. In: Jones, T.P. and Rowe, N.P., Eds., Fossil Plants and Spores: Modern Techniques, Geological Society, Lon-don, 257-260.
|
|
[18]
|
Bai, Y.J., Chen, L.Q., Ranhotra, P.S., Wang, Q., Wang, Y.F. and Li, C.S. (2015) Reconstructing Atmospheric CO2 during the Plio-Pleistocene Transition by Fossil Typha. Global Change Biology, 21, 874-881. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
McElwain, J., Mitchell, F.J.G. and Jones, M.B. (1995) Relationship of Stomatal Density and Index of Salix cinerea to Atmospheric Carbon Dioxide Concentrations in the Holocene. The Holo-cene, 5, 216-219. [Google Scholar] [CrossRef]
|
|
[20]
|
Rundgren, M. and Beerling, D. (1999) A Holocene CO2 Rec-ord from the Stomatal Index of Subfossil Salix herbacea L. Leaves from Northern Sweden. Holocene, 9, 509-513. [Google Scholar] [CrossRef]
|
|
[21]
|
Beerling, D.J., Chaloner, W.G., Huntley, B., Pearson, J.R.A. and Tooley, M.J. (1993) Stomatal Density Responds to the Glacial Cycle of Environmental Change. Proceedings of the Royal Society B Biological Sciences, 251, 133-138. [Google Scholar] [CrossRef]
|
|
[22]
|
McElwain, J. (1998) Do Fossil Plants Signal Palaeoatmospheric Car-bon Dioxide Concentration in the Geological Past? Philosophical Transactions of the Royal Society of London B: Biolog-ical Sciences, 353, 83-96. [Google Scholar] [CrossRef]
|
|
[23]
|
Finsinger, W. and Wagner-Cremer, F. (2009) Stomatal-Based Infer-ence Models for Reconstruction of Atmospheric CO2 Concentration: A Method Assessment Using a Calibration and Validation Approach. Holocene, 19, 757-764. [Google Scholar] [CrossRef]
|
|
[24]
|
Eide, W. and Birks, H.H. (2004) Stomatal Frequency of Betula pubescens and Pinus sylvestris Shows No Proportional Relationship with Atmospheric CO2 Concentration. Nordic Journal of Botany, 24, 327-339. [Google Scholar] [CrossRef]
|
|
[25]
|
Sun, B., Ding, S., Wu, J., Dong, C., Xie, S. and Lin, Z. (2012) Carbon Isotope and Stomatal Data of Late Pliocene Betulaceae Leaves from SW China: Implications for Palaeo-atmospheric CO2-Levels. Turkish Journal of Earth Sciences, 21, 237-250. [Google Scholar] [CrossRef]
|
|
[26]
|
Van Der Burgh, J., Visscher, H., Dilcher, D.L. and Kurschner, W.M. (1993) Paleoatmospheric Signatures in Neogene Fossil Leaves. Science, 260, 1788-1790. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kürschner, W.M., vanderBurgh, J., Visscher, H. and Dilcher, D.L. (1996) Oak Leaves as Biosensors of Late Neogene and Early Pleistocene Paleoatmospheric CO2 Concentrations. Marine Micropaleontology, 27, 299-312. [Google Scholar] [CrossRef]
|
|
[28]
|
Hu, J.J., Xing, Y.W., Turkington, R., Jacques, F.M., Su, T., Huang, Y.J. and Zhou, Z.K. (2015) A New Positive Relationship between pCO2 and Stomatal Frequency in Quercus guyavifolia (Fagaceae): A Potential Proxy for Palaeo-CO2 Levels. Annals of Botany, 115, 777-788. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, Y.Q., Momohara, A., Ito, A., Fukushima, T. and Huang, Y.J. (2018) Warm Climate under high CO2 Level in the Early Pleistocene Based on a Leaf Fossil Assemblage in Central Japan. Review of Palaeobotany and Palynology, 258, 146-153. [Google Scholar] [CrossRef]
|
|
[30]
|
Kürschner, W.M., Kvacek, Z. and Dilcher, D.L. (2008) The Impact of Miocene Atmospheric Carbon Dioxide Fluctuations on Climate and the Evolution of Terrestrial Ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 105, 449-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, Y., Momohara, A., Wakamatsu, N., Omori, T., Yoneda, M. and Yang, M. (2020) Middle and Late Holocene altitudinal Distribution Limit Changes of Fagus crenata Forest, Mt. Ku-rikoma, Japan Indicated by Stomatal Evidence. Boreas, 49, 718-729. [Google Scholar] [CrossRef]
|
|
[32]
|
Wang, Y.Q., Ito, A., Huang, Y.J., Fukushima, T., Wakamatsu, N. and Momohara, A. (2018) Reconstruction of Altitudinal Transportation Range of Leaves Based on Stomatal Evidence: An Example of the Early Pleistocene Fagus Leaf Fossils from Central Japan. Palaeogeography Palaeoclimatology Palaeoecology, 505, 317-325. [Google Scholar] [CrossRef]
|
|
[33]
|
LePage, B.A., Williams, C.J. and Yang, H. (2005) The Geobiol-ogy and Ecology of Metasequoia. In: Topics in Geobiology, Springer, Berlin, 116-126. [Google Scholar] [CrossRef]
|
|
[34]
|
Retallack, G.J. (2001) A 300-Million-Year Record of Atmospheric Carbon Dioxide from Fossil Plant Cuticles. Nature, 411, 287-290. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Retallack, G.J. and Conde, G.D. (2020) Deep Time Perspective on Rising Atmospheric CO2. Global and Planetary Change, 189, Article ID: 103177. [Google Scholar] [CrossRef]
|
|
[36]
|
Royer, D.L., Wing, S.L., Beerling, D.J., Jolley, D.W., Koch, P.L., Hickey, L.J. and Berner, R.A. (2001) Paleobotanical Evidence for Near Present-Day Levels of Atmospheric CO2 during Part of the Tertiary. Science, 292, 2310-2313. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Wang, Y., Momohara, A., Wang, L., Lebreton-Anberree, J. and Zhou, Z. (2015) Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles. PLOS ONE, 10, e0130941. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wang, Y., Wang, L., Momohara, A., Leng, Q. and Huang, Y.-J. (2020) The Paleogene Atmospheric CO2 Concentrations Reconstructed Using Stomatal Analysis of Fossil Metasequoia Needles. Palaeoworld, 29, 744-751. [Google Scholar] [CrossRef]
|
|
[39]
|
Ôishi, S. and mineralogy, (1938) On the Cuticles of Tertiary Ginkgoites Leaves from Kuzi, Iwate Prefecture. Journal of the Faculty of Science, Hokkaido Imperial University. Ser. 4, Geology, 4, 103-106.
|
|
[40]
|
Iwao, Y. (1978) Late Cenozoic Ginkgo biloba L. from the Hoshiwara Formation in Kuma-moto Prefecture, Kyushu, Japan. Reports of the Faculty of Science and Engineering Saga University, 6, 45-49.
|
|
[41]
|
Szafer, W. (1961) Miocénska flora ze starychGliwicnaŚląsku (Miocene flora from Stare Gliwice in Upper Silesia). InstitutGeologicznyPragce, 33, 205.
|
|
[42]
|
Lancucka-Srodoniowa, M. (1966) Tortonian Flora from the “Gdow Bay” in the South of Poland. Acta Palaeobotanica, 7, 3-135.
|
|
[43]
|
Royer, D.L. (2003) Estimating Latest Cretaceous and Tertiary Atmospheric CO2 from Stomatal Indices. Special Papers-Geological Society of America, 79-94. [Google Scholar] [CrossRef]
|
|
[44]
|
Retallack, G.J. (2009) Greenhouse Crises of the Past 300 Million Years. Geological Society of America Bulletin, 121, 1441-1455. [Google Scholar] [CrossRef]
|
|
[45]
|
Winguth, A., Shellito, C., Shields, C. and Winguth, C. (2010) Climate Response at the Paleocene-Eocene Thermal Maximum to Greenhouse Gas Forcing—A Model Study with CCSM3. Journal of Climate, 23, 2562-2584. [Google Scholar] [CrossRef]
|
|
[46]
|
Raven, J.A. and Ramsden, H.J. (1988) Similarity of Stomatal Index in the C4 Plant Salsola kali L. in Material Collected in 1843 and in 1987: Relevance to Changes in Atmospheric CO2 Content. Transactions of the Botanical Society of Edinburgh, 45, 223-233. [Google Scholar] [CrossRef]
|
|
[47]
|
Beerling, D.J. and Woodward, F.I. (1996) Pal-aeo-Ecophysiological Perspectives on Plant Responses to Global Change. Trends in Ecology & Evolution, 11, 20-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ehleringer, J.R. and Cerling, T.E. (1995) Atmospheric CO2 and the Ratio of Intercellular to Ambient CO2 Concentrations in Plants. Tree Physiology, 15, 105-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Policy, H.W., Johnson, H.B., Marinot, B.D. and Mayeux, H.S. (1993) Increase in C3 Plant Water-Use Efficiency and Biomass over Glacial to Present CO2 Concentrations. Nature, 361, 61-64. [Google Scholar] [CrossRef]
|
|
[50]
|
Wang, L. and Leng, Q. (2011) A New Method to Prepare Clean Cu-ticular Membrane from Fossil Leaves with Thin and Fragile Cuticles. Science China Earth Sciences, 54, 223-227. [Google Scholar] [CrossRef]
|
|
[51]
|
Hönisch, B., Hemming, N.G., Archer, D., Siddall, M. and McManus, J.F. (2009) Atmospheric Carbon Dioxide Concentration across the Mid-Pleistocene Transition. Science, 324, 1551-1554. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Foster, G.L. (2008) Seawater pH, pCO2 and [CO2−3] Variations in the Caribbean Sea over the last 130kyr: A Boron Isotope and B/Ca Study of Planktic Foraminifera. Earth and Planetary Science Letters, 271, 254-266. [Google Scholar] [CrossRef]
|
|
[53]
|
Sosdian, S.M., Greenop, R., Hain, M.P., Foster, G.L., Pearson, P.N. and Lear, C.H. (2018) Constraining the Evolution of Neogene Ocean Carbonate Chemistry Using the Boron Isotope pH Proxy. Earth and Planetary Science Letters, 498, 362-376. [Google Scholar] [CrossRef]
|
|
[54]
|
Chalk, T.B., Hain, M.P., Foster, G.L., Rohling, E.J., Sexton, P.F., Badger, M.P.S., Cherry, S.G., Hasenfratz, A.P., Haug, G.H., Jaccard, S.L., Martínez-García, A., Pälike, H., Pancost, R.D. and Wilson, P.A. (2017) Causes of Ice Age Intensification across the Mid-Pleistocene Transition. Proceedings of the National Academy of Sciences of the United States of America, 114, 13114-13119. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Dyez, K.A., Hönisch, B. and Schmidt, G.A. (2018) Early Pleisto-cene Obliquity-Scale pCO2 Variability at~1.5 Million Years Ago. Paleoceanography and Paleoclimatology, 33, 1270-1291. [Google Scholar] [CrossRef]
|
|
[56]
|
Martínez-Botí, M.A., Foster, G.L., Chalk, T.B., Rohling, E.J., Sexton, P.F., Lunt, D.J., Pancost, R.D., Badger, M.P.S. and Schmidt, D.N. (2015) Plio-Pleistocene Climate Sensi-tivity Evaluated Using High-Resolution CO2 Records. Nature, 518, 49-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
de la Vega, E., Chalk, T.B., Wilson, P.A., Bysani, R.P. and Foster, G.L. (2020) Atmospheric CO2 during the Mid-Piacenzian Warm Period and the M2 Glaciation. Scientific Reports, 10, Article No. 11002. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Badger, M.P.S., Lear, C.H., Pancost, R.D., Foster, G.L., Bailey, T.R., Leng, M.J. and Abels, H.A. (2013) CO2 Drawdown Following the Middle Miocene Expansion of the Antarctic Ice Sheet. Paleoceanography, 28, 42-53. [Google Scholar] [CrossRef]
|
|
[59]
|
Greenop, R., Foster, G.L., Wilson, P.A. and Lear, C.H. (2014) Middle Miocene Climate Instability Associated with High-Amplitude CO2 Variability. Paleoceanography, 29, 845-853. [Google Scholar] [CrossRef]
|
|
[60]
|
Pearson, P.N., Foster, G.L. and Wade, B.S. (2009) Atmospheric Carbon Dioxide through the Eocene-Oligocene Climate Transition. Nature, 461, 1110-1113. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Anagnostou, E., John, E.H., Babila, T.L., Sexton, P.F., Ridgwell, A., Lunt, D.J., Pearson, P.N., Chalk, T.B., Pancost, R.D. and Foster, G.L. (2020) Proxy Evidence for State-Dependence of Climate Sensitivity in the Eocene Greenhouse. Nature Communications, 11, Article No. 4436. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Eberle, J.J. and Greenwood, D.R. (2012) Life at the Top of the Greenhouse Eocene World—A Review of the Eocene Flora and Vertebrate Fauna from Canada’s High Arctic. GSA Bul-letin, 124, 3-23. [Google Scholar] [CrossRef]
|
|
[63]
|
Henehan, M.J., Edgar, K.M., Foster, G.L., Penman, D.E., Hull, P.M., Greenop, R., Anagnostou, E. and Pearson, P.N. (2020) Revisiting the Middle Eocene Climatic Optimum “Carbon Cycle Conundrum” with New Estimates of Atmospheric pCO2 from Boron Isotopes. Paleoceanography and Paleoclimatology, 35, e2019PA003713. [Google Scholar] [CrossRef]
|
|
[64]
|
Harper, D.T., Hönisch, B., Zeebe, R.E., Shaffer, G., Haynes, L.L., Thomas, E. and Zachos, J.C. (2020) The Magnitude of Surface Ocean Acidification and Carbon Release During Eocene Thermal Maximum 2 (ETM-2) and the Paleocene-Eocene Thermal Maximum (PETM). Paleoceanography and Paleo-climatology, 35, e2019PA003699. [Google Scholar] [CrossRef]
|
|
[65]
|
Penman, D.E., Hönisch, B., Zeebe, R.E., Thomas, E. and Zachos, J.C. (2014) Rapid and Sustained Surface Ocean Acidification during the Paleocene-Eocene Thermal Maximum. Paleocean-ography, 29, 357-369. [Google Scholar] [CrossRef]
|
|
[66]
|
Gutjahr, M., Ridgwell, A., Sexton, P.F., Anagnostou, E., Pearson, P.N., Pälike, H., Norris, R.D., Thomas, E. and Foster, G.L. (2017) Very Large Release of Mostly Volcanic Carbon dur-ing the Palaeocene-Eocene Thermal Maximum. Nature, 548, 573-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Henehan, M.J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt, D.N., Rae, J.W.B., Witts, J.D., Landman, N.H., Greene, S.E., Huber, B.T., Super, J.R., Planavsky, N.J. and Hull, P.M. (2019) Rapid Ocean Acidification and Protracted Earth System Recovery Followed the End-Cretaceous Chicxulub Impact. Proceedings of the National Academy of Sciences of the United States of America. Proceedings of the National Academy of Sciences of the United States of America, 116, 22500-22504. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Beerling, D.J., Lomax, B.H., Royer, D.L., Upchurch Jr., G.R. and Kump, L.R. (2002) An Atmospheric pCO2 Reconstruction across the Cretaceous-Tertiary Boundary from Leaf Megafos-sils. Proceedings of the National Academy of Sciences of the United States of America, 99, 7836-7840. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Doria, G., Royer, D.L., Wolfe, A.P., Fox, A., Westgate, J.A. and Beerling, D.J. (2011) Declining Atmospheric CO2 during the Late Middle Eocene Climate Transition. American Journal of Science, 311, 63-75. [Google Scholar] [CrossRef]
|
|
[70]
|
Rae, J.W.B., Zhang, Y.G., Liu, X., Foster, G.L., Stoll, H.M. and White-ford, R.D.M. (2021) Atmospheric CO2 over the Past 66 Million Years from Marine Archives. Annual Review of Earth and Planetary Sciences, 49, 609-641. [Google Scholar] [CrossRef]
|
|
[71]
|
Royer, D.L., Berner, R.A. and Beerling, D.J. (2001) Phanerozoic Atmospheric CO2 Change: Evaluating Geochemical and Paleobiological Approaches. Earth-Science Reviews, 54, 349-392. [Google Scholar] [CrossRef]
|
|
[72]
|
Pagani, M., Lemarchand, D., Spivack, A. and Gaillardet, J. (2005) A Critical Evaluation of the Boron Isotope-pH Proxy: The Accuracy of Ancient Ocean pH Estimates. Geochimica Et Cosmochimica Acta, 69, 953-961. [Google Scholar] [CrossRef]
|
|
[73]
|
Henderiks, J. and Pagani, M. (2008) Coccolithophore Cell Size and the Paleogene Decline in Atmospheric CO2. Earth and Planetary Science Letters, 269, 575-583. [Google Scholar] [CrossRef]
|
|
[74]
|
Pagani, M., Freeman, K.H. and Arthur, M.A. (1999) Late Miocene Atmospheric CO2 Concentrations and the Expansion of C(4) Grasses. Science, 285, 876-879. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Pagani, M., Arthur, M.A. and Freeman, K.H. (1999) Miocene Evolution of Atmospheric Carbon Dioxide. Paleoceanography, 14, 273-292. [Google Scholar] [CrossRef]
|
|
[76]
|
Westerhold, T., Marwan, N., Drury, A.J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J.S., Bohaty, S.M., De Vleeschouwer, D. and Florindo, F.J.S. (2020) An Astronomically Dated Record of Earth’s Climate and Its Predictability over the Last 66 Million Years. Science, 369, 1383-1387. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Hansen, J., Sato, M., Kharecha, P., Beerling, D., Berner, R., Mas-son-Delmotte, V., Pagani, M., Raymo, M., Royer, D.L. and Zachos, J.C. (2008) Target Atmospheric CO: Where Should Humanity Aim? The Open Atmospheric Science Journal, 2, 217-231. [Google Scholar] [CrossRef]
|
|
[78]
|
Tripati, A. and Elderfield, H. (2005) Deep-Sea Temperature and Circulation Changes at the Paleocene-Eocene Thermal Maximum. Science, 308, 1894-1898. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Zachos, J.C., Rohl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly, D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H. and Kroon, D. (2005) Rapid Acidification of the Ocean during the Paleocene-Eocene Thermal Maximum. Science, 308, 1611-1615. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Pearson, P.N., van Dongen, B.E., Nicholas, C.J., Pancost, R.D., Schouten, S., Singano, J.M. and Wade, B.S. (2007) Stable Warm Tropical Climate through the Eocene Epoch. Geology, 35, 211-214. [Google Scholar] [CrossRef]
|
|
[81]
|
Wing, S.L., Harrington, G.J., Smith, F.A., Bloch, J.I., Boyer, D.M. and Freeman, K.H. (2005) Transient Floral Change and Rapid Global Warming at the Paleocene-Eocene Boundary. Science, 310, 993-996. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Fletcher, B.J., Brentnall, S.J., Anderson, C.W., Berner, R.A. and Beerling, D.J. (2007) Atmospheric Carbon Dioxide Linked with Mesozoic and Early Cenozoic Climate Change. Nature Geoscience, 1, 43-48. [Google Scholar] [CrossRef]
|
|
[83]
|
Dickens, G.R., Castillo, M.M. and Walker, J.C. (1997) A Blast of Gas in the Latest Paleocene: Simulating First-Order Effects of Massive Dissociation of Oceanic Methane Hydrate. Geology, 25, 259-262. [Google Scholar] [CrossRef]
|
|
[84]
|
Higgins, J.A. and Schrag, D.P. (2006) Beyond Methane: Towards a Theory for the Paleocene–Eocene Thermal Maximum. Earth and Planetary Science Letters, 245, 523-537. [Google Scholar] [CrossRef]
|
|
[85]
|
Pearson, P.N., Ditchfield, P.W., Singano, J., Harcourt-Brown, K.G., Nicholas, C.J., Olsson, R.K., Shackleton, N.J. and Hall, M.A. (2001) Warm Tropical Sea Sur-face Temperatures in the Late Cretaceous and Eocene Epochs. Nature, 413, 481-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Beerling, D., Berner, R.A., Mackenzie, F.T., Harfoot, M.B. and Pyle, J.A. (2009) Methane and the CH4-Related Greenhouse Effect over the Past 400 Million Years. American Journal of Science, 309, 97-113. [Google Scholar] [CrossRef]
|
|
[87]
|
Melton, J., Wania, R., Hodson, E., Poulter, B., Ringeval, B., Spahni, R., Bohn, T., Avis, C., Beerling, D. and Chen, G. (2013) Present State of Global Wetland Extent and Wetland Methane Modelling: Conclusions from a Model Intercomparison Project (WETCHIMP). Biogeosciences, 10, 753-788. [Google Scholar] [CrossRef]
|
|
[88]
|
Sluijs, A., Brinkhuis, H., Schouten, S., Bohaty, S.M., John, C.M., Zachos, J.C., Reichart, G.J., Damste, J.S.S., Crouch, E.M. and Dickens, G.R. (2007) Environmental Precursors to Rapid Light Carbon Injection at the Palaeocene/Eocene Boundary. Nature, 450, 1218-1221. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Lamotte, R.S. (1936) The Upper Cedarville Flora of Northwestern Neva-da and Adjacent California. Carnegie Institution of Washington, Washington DC.
|
|
[90]
|
Bijl, P.K., Houben, A.J.P., Schouten, S., Bohaty, S.M., Sluijs, A., Reichart, G.J., Damste, J.S.S. and Brinkhuis, H. (2010) Transient Middle Eocene Atmospheric CO2 and Temperature Variations. Science, 330, 819-821. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
DeConto, R.M. and Pollard, D. (2003) Rapid Cenozoic Glaciation of Antarctica Induced by Declining Atmospheric CO2. Nature, 421, 245. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Deconto, R.M., Pollard, D., Wilson, P.A., Palike, H., Lear, C.H. and Pa-gani, M. (2008) Thresholds for Cenozoic Bipolar Glaciation. Nature, 455, 652-656. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Pearson, P.N., et al. (2001) Warm Tropical Sea Surface Temperatures in the Late Cretaceous and Eocene Epochs. Nature, 413, 481-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Knorr, G., Butzin, M., Micheels, A. and Lohmann, G. (2011) A Warm Miocene Climate at Low Atmospheric pCO2 Levels. Geo-physical Research Letters, 38, L20701. [Google Scholar] [CrossRef]
|
|
[95]
|
Pagani, M., Zachos, J.C., Freeman, K.H., Tipple, B. and Bohaty, S. (2005) Marked Decline in Atmospheric Carbon Dioxide Concentrations during the Paleogene. Science, 309, 600-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Mosbrugger, V., Utescher, T. and Dilcher, D.L. (2005) Cenozoic Continental Climatic Evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 14964-14969. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Shevenell, A.E., Kennett, J.P. and Lea, D.W. (2004) Middle Mio-cene Southern Ocean Cooling and Antarctic Cryosphere Expansion. Science, 305, 1766-1770. [Google Scholar] [CrossRef] [PubMed]
|