|
[1]
|
Alicic, R.Z., Rooney, M.T. and Tuttle, K.R. (2017) Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clinical Journal of the American Society of Nephrology, 12, 2032-2045. [Google Scholar] [CrossRef]
|
|
[2]
|
Gregg, E.W., Li, Y., Wang, J., Burrows, N.R., Ali, M.K., Rolka, D., et al. (2014) Changes in Diabetes-Related Complications in the United States, 1990-2010. The New England Journal of Medicine, 370, 1514-1523. [Google Scholar] [CrossRef]
|
|
[3]
|
Thomas, M.C., Brownlee, M., Susztak, K., Sharma, K., Jande-leitDahm, K.A., Zoungas, S., et al. (2015) Diabetic Kidney Disease. Nature Reviews Disease Primers, 1, Article No. 15018. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Anders, H.J., Huber, T.B., Isermann, B. and Schiffer, M. (2018) CKD in Diabetes: Diabetic Kidney Disease versus Nondiabetic Kidney Disease. Nature Reviews Nephrology, 14, 361-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Diabetes Control and Complications Trial Research Group, Nathan, D.M., Genuth, S., Lachin, J., Cleary, P., Crofford, O., et al. (1993) The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus. The New England Journal of Medicine, 329, 977-986. [Google Scholar] [CrossRef]
|
|
[6]
|
American Diabetes Association (2018) 6. Glycemic Targets: Standards of Medical Care in Diabetes—2018. Diabetes Care, 41, S55-S64. [Google Scholar] [CrossRef]
|
|
[7]
|
ADV ANCE Collaborative Group, Patel, A., MacMahon, S., Chalmers, J., Neal, B., Billot, L., et al. (2008) Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Dia-betes. The New England Journal of Medicine, 358, 2560-2572. [Google Scholar] [CrossRef]
|
|
[8]
|
Ismail-Beigi, F., Craven, T., Banerji, M.A., Basile, J., Calles, J., Cohen, R.M., et al. (2010) Effect of Intensive Treatment of Hyperglycaemia on Microvascular Outcomes in Type 2 Dia-betes: An Analysis of the ACCORD Randomised Trial. The Lancet, 376, 419-430. [Google Scholar] [CrossRef]
|
|
[9]
|
Tamborlane, W.V., Puklin, J.E., Bergman, M., Verdonk, C., Rudolf, M.C., Felig, P., et al. (1982) Long-Term Improvement of Metabolic Control with the Insulin Pump Does Not Reverse Diabetic Microangiopathy. Diabetes Care, 5, 58-64.
|
|
[10]
|
Caramori, M.L., Fioretto, P. and Mauer, M. (2003) Low Glomerular Filtrationrate in Normoalbuminuric Type 1 Diabetic Patients: An Indicator of More Advanced Glomer-ular Lesions. Diabetes, 52, 1036-1040. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lin, L., Tan, W., Pan, X., Tian, E., Wu, Z. and Yang, J. (2022) Metabolic Syndrome-Related Kidney Injury: A Review and Update. Frontiers in Endocrinology (Lausanne), 13, Article ID: 904001. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lin, Y.C., Chang, Y.H., Yang, S.Y., Wu, K.D. and Chu, T.S. (2018) Update of Pathophysiology and Management of Diabetic Kidney Disease. Journal of the Formosan Medical As-sociation, 117, 662-675. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sharma, D., Bhattacharya, P., Kalia, K. and Tiwari, V. (2017) Dia-betic Nephropathy: New Insights into Established Therapeutic Paradigms and Novel Molecular Targets. Diabetes Re-search and Clinical Practice, 128, 91-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Warren, A.M., Knudsen, S.T. and Cooper, M.E. (2019) Diabetic Nephropathy: An Insight into Molecular Mechanisms and Emerging Therapies. Expert Opinion on Therapeutic Targets, 23, 579-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Chow, F., Ozols, E., Nikolic-Paterson, D.J., Atkins, R.C. and Tesch, G.H. (2004) Macrophages in Mouse Type 2 Diabetic Nephropathy: Correlation with Diabetic State and Pro-gressive Renal Injury. Kidney International, 65, 116-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Shahzad, K., Bock, F., Dong, W., Wang, H., Kopf, S., Kohli, S., et al. (2015) Nlrp3-Inflammasome Activation in Non-Myeloid-Derived Cells Aggravates Diabetic Nephropa-thy. Kidney International, 87, 74-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Honda, T., Hirakawa, Y. and Nangaku, M. (2019) The Role of Oxidative Stress and Hypoxia in Renal Disease. Kidney Research and Clinical Practice, 38, 414-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Verma, S., Singh, P., Khurana, S., Ganguly, N.K., Kukreti, R., Saso, L., et al. (2021) Implications of Oxidative Stress in Chronic Kidney Disease: A Review on Current Concepts and Therapies. Kidney Research and Clinical Practice, 40, 183-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Sasaki, S. and Inoguchi, T. (2012) The Role of Oxidative Stress in the Pathogenesis of Diabetic Vascular Complications. Diabetes & Metabolism Journal, 36, 255-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Goligorsky, M.S., Chen, J. and Brodsky, S. (2001) Workshop: Endothelial Cell Dysfunction Leading to Diabetic Nephropathy: Focus on Nitric Oxide. Hypertension, 37, 744-748. [Google Scholar] [CrossRef]
|
|
[21]
|
黄丽君, 占志平, 张琳静, 熊小琴, 童俊, 童惠. 血清FGF-21、FGF-23在糖尿病肾病中的表达及其临床意义[J]. 标记免疫分析与临床, 2020, 27(4): 598-602.
|
|
[22]
|
Wu, Z., Yu, S., Kang, X., Liu, Y., Xu, Z., Li, Z., Wang, J., Miao, X., Liu, X., Li, X., Zhang, J., Wang, W., Tao, L. and Guo, X. (2022) Association of Visceral Adiposity Index with Incident Nephropathy and Retinopathy: A Cohort Study in the Diabetic Population. Cardiovascular Diabetology, 21, Article No. 32. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Potthoff, M.J., Inagaki, T., et al. (2009) FGF21 Induces PGC-1alpha and Regulates Carbohydrate and Fatty Acid Metabolism during the Adaptive Starvation Response. Pro-ceedings of the National Academy of Sciences of the United States of America, 106, 10853-10858. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
崔洪臣. 氧化应激与糖尿病肾病[J]. 临床内科杂志, 2015, 32(1): 65-66.
|
|
[25]
|
Inoguchi, T., Li, P., Umeda, F., Yu, H.Y., Kakimoto, M., Imamura, M., Aoki, T., et al. (2000) High Glu-cose Level and Free Fatty Acid Stimulate Reactive Oxygen Species Production through Protein Kinase C-Dependent Ac-tivation of NAD(P)H Oxidase in Cultured Vascular Cells. Diabetes, 49, 1939-1945. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bamba, R., Okamura, T., Hashimoto, Y., Hamaguchi, M., Obora, A., Kojima, T. and Fukui, M. (2020) The Visceral Adiposity Index Is a Predictor of Incident Chronic Kidney Disease: A Population-Based Longitudinal Study. Kidney and Blood Pressure Research, 45, 407-418. [Google Scholar] [CrossRef] [PubMed]
|