带 Hardy 位势的非线性薛定谔方程驻波解的强不稳定性
Strong Instability of Standing Waves for the Nonlinear Schrodinger Equation with Hardy Potential
摘要: 本文研究了带 Hardy 位势和混合非线性项的薛定谔方程基态驻波解的强不稳定性。通过建立基态解的变分刻画,在基态解的邻域内构造了爆破解的存在性。从而证明了基态驻波解的强不稳定性。
Abstract: The aim of this paper is to study the strong instability of ground state standing waves for the Schrodinger equation with hardy potential and combined nonlinearilities. By establishing the variational characterization of the ground states, the existence of the finite time blow-up is constructed in the neighborhood of the ground state solution, and the strong instability of the ground state standing wave is proved.
文章引用:秦绪芬. 带 Hardy 位势的非线性薛定谔方程驻波解的强不稳定性[J]. 理论数学, 2023, 13(7): 2057-2068. https://doi.org/10.12677/PM.2023.137212

参考文献

[1] Berestycki, H. and Cazenave, T. (1981) Instabilite des etats stationaires dans les euations de Schrodinger et de Klein-Gordon non lineires. Comptes Rendus de l'Academie des Sciences, 293, 489-492.
[2] Coz, S.L. (2008) A Note on Berestycki-Cazenave's Classical Instability Result for Nonlinear Schrodinger Equations. Advanced Nonlinear Studies, 8, 455-463.
https://doi.org/10.1515/ans-2008-0302
[3] Feng, B.H. and Wang, Q.X. (2021) Strong Instability of Standing Waves for Nonlinear Schrodinger Equations in Trapped Dipolar Quantum Gases. Journal of Dynamics and Differential Equations, 33, 1989-2008.
https://doi.org/10.1007/s10884-020-09881-0
[4] Fukaya, N. and Ohta, M. (2019) Strong Instability of StandingWaves for Nonlinear Schrodinger Equations with Attractive Inverse Power Potential. Osaka Journal of Mathematics, 56, 713-726.
[5] Ohta, M. (2018) Strong Instability of Standing Waves for Nonlinear Schrodinger Equations with Harmonic Potential. Funkcialaj Ekvacioj, 61, 135-143.
https://doi.org/10.1619/fesi.61.135
[6] Ohta, M. (2018) Strong Instability of Standing Waves for Nonlinear Schrodinger Equations with a Partial Confinement. Communications on Pure and Applied Analysis, 17, 1671-1680.
https://doi.org/10.3934/cpaa.2018080
[7] Bensouilah, A., Dinh, V.D. and Zhu, S.H. (2018) On Stability and Instability of Standing Waves for the Nonlinear Schrodinger Equation with Inverse-Square Potential. Journal of Mathematical Physics, 59, Article 101505.
https://doi.org/10.1063/1.5038041
[8] Dinh, V.D. (2021) On the Instability of StandingWaves for the Nonlinear Schrodinger Equation with Inverse-Square Potential. Complex Variables and Elliptic Equations, 66, 1699-1716.
https://doi.org/10.1080/17476933.2020.1779235
[9] Killip, R., Miao, C., Visan, M., et al. (2017) Sobolev Spaces Adapted to the Schrodinger Operator with Inverse-Square Potential. Mathematische Zeitschrift, 288, 1273-1298.
https://doi.org/10.1007/s00209-017-1934-8
[10] Okazawa, N., Suzuki, T. and Yokota, T. (2012) Energy Methods for Abstract Nonlinear Schrodinger Equations. Evolution Equations and Control Theory, 1, 337-354.
https://doi.org/10.3934/eect.2012.1.337
[11] Cazenave, T. (2003) Semilinear Schrodinger Equations. Courant Lecture Notes in Mathematics Vol. 10, New York University, Courant Institute of Mathematical Sciences. American Mathematical Society, New York, Providence, RI.
[12] Glassey, R.T. (1997) On the Blowing up of Solutions to the Cauchy Problem for Nonlinear Schrodinger Equation. Journal of Mathematical Physics, 18, 1794-1797.
https://doi.org/10.1063/1.523491