|
[1]
|
Altobelli, E., Rapacchietta, L., Profeta, V.F., et al. (2018) Risk Factors for Abdominal Aortic Aneurysm in Popula-tion-Based Studies: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 15, 2805. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Anderson, P.L., Arons, R.R., Moskowitz, A.J., et al. (2004) A Statewide Experience with Endovascular Abdominal Aortic Aneurysm Repair: Rapid Diffusion with Excellent Early Results. Journal of Vascular Surgery, 39, 10-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kim, L.G., Thompson, S.G., Marteau, T.M., et al. (2004) Screening for Abdominal Aortic Aneurysms: The Effects of Age and Social Deprivation on Screening Uptake, Prevalence and At-tendance at Follow-Up in the MASS Trial. Journal of Medical Screening, 11, 50-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kuivaniemi, H., Ryer, E.J., Elmore, J.R., et al. (2015) Under-standing the Pathogenesis of Abdominal Aortic Aneurysms. Expert Review of Cardiovascular Therapy, 13, 975-987. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bown, M.J., Burton, P.R., Horsburgh, T., et al. (2003) The Role of Cytokine Gene Polymorphisms in the Pathogenesis of Abdominal Aortic Aneurysms: A Case-Control Study. Journal of Vascular Surgery, 37, 999-1005. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chen, Q., Jin, M., Yang, F., et al. (2013) Matrix Metalloproteinases: Inflammatory Regulators of Cell Behaviors in Vascular Formation and Remodeling. Mediators of Inflammation, 2013, Article ID: 928315. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Saatchi, S., Azuma, J., Wanchoo, N., et al. (2012) Three-Dimensional Microstructural Changes in Murine Abdominal Aortic Aneurysms Quantified Using Immunofluorescent Array Tomog-raphy. Journal of Histochemistry & Cytochemistry, 60, 97-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yamanouchi, D., Morgan, S., Stair, C., et al. (2012) Accelerated Aneurysmal Dilation Associated with Apoptosis and Inflammation in a Newly Developed Calcium Phosphate Rodent Abdominal Aortic Aneurysm Model. Journal of Vascular Surgery, 56, 455-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Thompson, R.W., Liao, S. and Curci, J.A. (1997) Vascular Smooth Muscle Cell Apoptosis in Abdominal Aortic Aneurysms. Coronary Artery Disease, 8, 623-631. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Rajagopalan, S., Meng, X.P., Ramasamy, S., et al. (1996) Reactive Oxygen Species Produced by Macrophage-Derived Foam Cells Regulate the Activity of Vascular Matrix Met-alloproteinases in Vitro. Implications for Atherosclerotic Plaque Stability. Journal of Clinical Investigation, 98, 2572-2579. [Google Scholar] [CrossRef]
|
|
[11]
|
Waring, P. and Müllbacher, A. (1999) Cell Death Induced by the Fas/Fas Ligand Pathway and Its Role in Pathology. Immunology & Cell Biology, 77, 312-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lee, T. and Chau, L. (2001) Fas/Fas Ligand-Mediated Death Pathway Is Involved in oxLDL-Induced Apoptosis in Vascular Smooth Muscle Cells. The American Journal of Physiology-Cell Physiology, 280, C709-C718. [Google Scholar] [CrossRef]
|
|
[13]
|
Kuiper, J., Quax, P.H. and Bot, I. (2013) Anti-Apoptotic Ser-pins as Therapeutics in Cardiovascular Diseases. Cardiovascular & Hematological Disorders-Drug Targets, 13, 111-122. [Google Scholar] [CrossRef]
|
|
[14]
|
Lu, H., Fan, Y., Qiao, C., et al. (2017) TFEB In-hibits Endothelial Cell Inflammation and Reduces Atherosclerosis. Science Signaling, 10, eaah4214. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lu, H., Sun, J., Liang, W., et al. (2020) Cyclodextrin Prevents Ab-dominal Aortic Aneurysm via Activation of Vascular Smooth Muscle Cell Transcription Factor EB. Circulation, 142, 483-498. [Google Scholar] [CrossRef]
|
|
[16]
|
Leeper, N.J., Raiesdana, A., Kojima, Y., et al. (2011) MicroRNA-26a Is a Novel Regulator of Vascular Smooth Muscle Cell Function. Journal of Cellular Physiology, 226, 1035-1043. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kumarswamy, R., Volkmann, I. and Thum, T. (2011) Regulation and Function of miRNA-21 in Health and Disease. RNA Biology, 8, 706-713. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Maegdefessel, L., Azuma, J., Toh, R., et al. (2012) MicroRNA-21 Blocks Abdominal Aortic Aneurysm Development and Nicotine-Augmented Expansion. Science Translational Medicine, 4, 122ra22. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
He, X., Wang, S., Li, M., et al. (2019) Long Noncoding RNA GAS5 Induces Abdominal Aortic Aneurysm Formation by Promoting Smooth Muscle Apoptosis. Theranostics, 9, 5558-5576. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Le, T., He, X., Huang, J., et al. (2021) Knockdown of Long Noncoding RNA GAS5 Reduces Vascular Smooth Muscle Cell Apoptosis by Inactivating EZH2-Mediated RIG-I Sig-naling Pathway in Abdominal Aortic Aneurysm. Journal of Translational Medicine, 19, Article No. 466. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Tang, R., Mei, X., Wang, Y.C., et al. (2019) LncRNA GAS5 Regulates Vascular Smooth Muscle Cell Cycle Arrest and Apoptosis via p53 Pathway. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1865, 2516-2525. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Boon, R.A. and Dimmeler, S. (2011) MicroRNAs and Aneu-rysm Formation. Trends in Cardiovascular Medicine, 21, 172-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, D.Y., Busch, A., Jin, H., et al. (2018) H19 Induces Abdominal Aortic Aneurysm Development and Progression. Circulation, 138, 1551-1568. [Google Scholar] [CrossRef]
|
|
[24]
|
Busch, A., Pauli, J., Winski, G., et al. (2021) Lenvatinib Halts Aortic Aneurysm Growth by Restoring Smooth Muscle Cell Contractility. JCI Insight, 6, e140364. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, Z., Zou, G., Chen, X., et al. (2019) Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model. Molecules and Cells, 42, 218-227.
|
|
[26]
|
Li, H., Xu, H., Wen, H., et al. (2021) Lysyl Hydrox-ylase 1 (LH1) Deficiency Promotes Angiotensin II (Ang II)-Induced Dissecting Abdominal Aortic Aneurysm. Theranostics, 11, 9587-9604. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Prescott, M.F., Sawyer, W.K., Von Lin-den-Reed, J., et al. (1999) Effect of Matrix Metalloproteinase Inhibition on Progression of Atherosclerosis and Aneu-rysm in LDL Receptor-Deficient Mice Overexpressing MMP-3, MMP-12, and MMP-13 and on Restenosis in Rats after Balloon Injury. Annals of the New York Academy of Sciences, 878, 179-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Airhart, N., Brownstein, B.H., Cobb, J.P., et al. (2014) Smooth Muscle Cells from Abdominal Aortic Aneurysms Are Unique and Can Independently and Synergistically De-grade Insoluble Elastin. Journal of Vascular Surgery, 60, 1033- 1041. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Howard, E.W., Bullen, E.C. and Banda, M.J. (1991) Preferential In-hibition of 72- and 92-kDa Gelatinases by Tissue Inhibitor of Metalloproteinases-2. Journal of Biological Chemistry, 266, 13070-13075. [Google Scholar] [CrossRef]
|
|
[30]
|
Tamarina, N.A., Mcmillan, W.D., Shively, V.P., et al. (1997) Expression of Matrix Metalloproteinases and Their Inhibitors in Aneurysms and Normal Aorta. Surgery, 122, 264-271. [Google Scholar] [CrossRef]
|
|
[31]
|
Nosoudi, N., Nahar-Gohad, P., Sinha, A., et al. (2015) Pre-vention of Abdominal Aortic Aneurysm Progression by Targeted Inhibition of Matrix Metalloproteinase Activity with Batimastat-Loaded Nanoparticles. Circulation Research, 117, e80-e89. [Google Scholar] [CrossRef]
|
|
[32]
|
Wanga, S., Hibender, S., Ridwan, Y., et al. (2017) Aortic Microcalcification Is Associated with Elastin Fragmentation in Marfan Syndrome. The Journal of Pathology, 243, 294-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Handford, P., Downing, A.K., Rao, Z., et al. (1995) The Calcium Binding Properties and Molecular Organization of Epidermal Growth Factor-Like Domains in Human Fibrillin-1. Jour-nal of Biological Chemistry, 270, 6751-6756. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Mazurek, R., Dave, J.M., Chandran, R.R., et al. (2017) Vascular Cells in Blood Vessel Wall Development and Disease. Advances in Pharmacology, 78, 323-350. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Owens, G.K., Kumar, M.S. and Wamhoff, B.R. (2004) Molecu-lar Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiological Reviews, 84, 767-801. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Guo, X. and Chen, S.Y. (2012) Transforming Growth Factor-β and Smooth Muscle Differentiation. World Journal of Biological Chemistry, 3, 41-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Coll-Bonfill, N., De la Cruz-Thea, B., Pisano, M.V., et al. (2016) Noncoding RNAs in Smooth Muscle Cell Homeostasis: Implications in Phenotypic Switch and Vascular Disorders. Pflügers Archiv, 468, 1071-1087. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ailawadi, G., Moehle, C.W., Pei, H., et al. (2009) Smooth Muscle Phenotypic Modulation Is an Early Event in Aortic Aneurysms. The Journal of Thoracic and Cardiovascular Surgery, 138, 1392-1399. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Yoshida, T., Kaestner, K.H. and Owens, G.K. (2008) Conditional Deletion of Krüppel-Like Factor 4 Delays Downregulation of Smooth Muscle Cell Differentiation Markers but Acceler-ates Neointimal Formation Following Vascular Injury. Circulation Research, 102, 1548-1557. [Google Scholar] [CrossRef]
|
|
[40]
|
Crosas-Molist, E., Meirelles, T., López-Luque, J., et al. (2015) Vascular Smooth Muscle Cell Phenotypic Changes in Patients with Marfan Syndrome. Arteriosclerosis, Throm-bosis, and Vascular Biology, 35, 960-972. [Google Scholar] [CrossRef]
|
|
[41]
|
Huang, X., Yue, Z., Wu, J., et al. (2018) MicroRNA-21 Knockout Exacerbates Angiotensin II-Induced Thoracic Aortic Aneurysm and Dissection in Mice with Abnormal Trans-forming Growth Factor-β-SMAD3 Signaling. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1086-1101. [Google Scholar] [CrossRef]
|
|
[42]
|
Liang, E.S., Bai, W.W., Wang, H., et al. (2018) PARP-1 (Poly[ADP-Ribose] Polymerase 1) Inhibition Protects from Ang II (Angiotensin II)-Induced Abdominal Aortic Aneu-rysm in Mice. Hypertension, 72, 1189-1199. [Google Scholar] [CrossRef]
|
|
[43]
|
Biros, E., Walker, P.J., Nataatmadja, M., et al. (2012) Downregulation of Transforming Growth Factor, Beta Receptor 2 and Notch Signaling Pathway in Human Ab-dominal Aortic Aneurysm. Atherosclerosis, 221, 383-386. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chen, P.Y., Qin, L., Li, G., et al. (2020) Smooth Muscle Cell Reprogramming in Aortic Aneurysms. Cell Stem Cell, 26, 542-557.e11. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Cui, M., Cai, Z., Chu, S., et al. (2016) Orphan Nuclear Receptor Nur77 Inhibits Angiotensin II-Induced Vascular Remodeling via Downregulation of β-Catenin. Hypertension, 67, 153-162. [Google Scholar] [CrossRef]
|
|
[46]
|
Shi, X., Xu, C., Li, Y., et al. (2020) A Novel Role of VEPH1 in Regulating AoSMC Phenotypic Switching. Journal of Cellular Physiology, 235, 9336-9346. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Kollara, A., Shathasivam, P., Park, S., et al. (2020) Increased Androgen Receptor Levels and Signaling in Ovarian Cancer Cells by VEPH1 Associated with Suppression of SMAD3 and AKT Activation. The Journal of Steroid Biochemistry and Molecular Biology, 196, Article ID: 105498. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Shathasivam, P., Kollara, A., Ringuette, M.J., et al. (2015) Hu-man Ortholog of Drosophila Melted Impedes SMAD2 Release from TGF-β Receptor I to Inhibit TGF-β Signaling. Pro-ceedings of the National Academy of Sciences of the United States of America, 112, E3000-E3009. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Shathasivam, P., Kollara, A., Spybey, T., et al. (2017) VEPH1 Ex-pression Decreases Vascularisation in Ovarian Cancer Xenografts and Inhibits VEGFA and IL8 Expression through In-hibition of AKT Activation. British Journal of Cancer, 116, 1065-1076. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Shi, X., Ma, W., Pan, Y., et al. (2020) MiR-126-5p Promotes Contractile Switching of Aortic Smooth Muscle Cells by Targeting VEPH1 and Alleviates Ang II-Induced Abdominal Aortic An-eurysm in Mice. Laboratory Investigation, 100, 1564-1574. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Li, L., Ma, W., Pan, S., et al. (2020) MiR-126a-5p Limits the Formation of Abdominal Aortic Aneurysm in Mice and Decreases ADAMTS-4 Expression. Journal of Cellular and Molecular Medicine, 24, 7896-7906. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Rangrez, A.Y., Massy, Z.A., Metzinger-Le Meuth, V., et al. (2011) miR-143 and miR-145: Molecular Keys to Switch the Phenotype of Vascular Smooth Muscle Cells. Circulation: Cardi-ovascular Genetics, 4, 197-205. [Google Scholar] [CrossRef]
|
|
[53]
|
Xin, M., Small, E.M., Sutherland, L.B., et al. (2009) MicroRNAs miR-143 and miR-145 Modulate Cytoskeletal Dynamics and Responsiveness of Smooth Muscle Cells to Injury. Genes & Development, 23, 2166-2178. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Lu, W., Zhou, Y., Zeng, S., et al. (2021) Loss of FoxO3a Prevents Aor-tic Aneurysm Formation through Maintenance of VSMC Homeostasis. Cell Death & Disease, 12, 378. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Hayashi, K., Saga, H., Chimori, Y., et al. (1998) Differentiated Phenotype of Smooth Muscle Cells Depends on Signaling Pathways through Insulin-Like Growth Factors and Phospha-tidylinositol 3-Kinase. Journal of Biological Chemistry, 273, 28860-28867. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Hayashi, K., Takahashi, M., Kimura, K., et al. (1999) Changes in the Balance of Phosphoinositide 3-Kinase/Protein Kinase B (Akt) and the Mitogen-Activated Protein Kinases (ERK/p38MAPK) Determine a Phenotype of Visceral and Vascular Smooth Muscle Cells. Journal of Cell Biology, 145, 727-740. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Liu, Z.P., Wang, Z., Yanagisawa, H., et al. (2005) Phenotypic Modulation of Smooth Muscle Cells through Interaction of Foxo4 and Myocardin. Developmental Cell, 9, 261-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wang, C., Wen, J., Zhou, Y., et al. (2015) Apelin Induces Vas-cular Smooth Muscle Cells Migration via a PI3K/Akt/ FoxO3a/MMP-2 Pathway. The International Journal of Biochem-istry & Cell Biology, 69, 173-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Zhao, G., Fu, Y., Cai, Z., et al. (2017) Unspliced XBP1 Confers VSMC Homeostasis and Prevents Aortic Aneurysm Formation via FoxO4 Interaction. Circulation Research, 121, 1331-1345. [Google Scholar] [CrossRef]
|
|
[60]
|
Murdoch, J.D., Rostosky, C.M., Gowrisankaran, S., et al. (2016) Endophilin-A Deficiency Induces the Foxo3a-Fbxo32 Network in the Brain and Causes Dysregulation of Au-tophagy and the Ubiquitin-Proteasome System. Cell Reports, 17, 1071-1086. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Fitzwalter, B.E., Towers, C.G., Sullivan, K.D., et al. (2018) Au-tophagy Inhibition Mediates Apoptosis Sensitization in Cancer Therapy by Relieving FOXO3a Turnover. Developmental Cell, 44, 555-565.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Wang, C., Xu, W., Zhang, Y., et al. (2018) PARP1 Promote Autophagy in Cardiomyocytes via Modulating FoxO3a Transcription. Cell Death & Disease, 9, 1047. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Dale, M., Fitzgerald, M.P., Liu, Z., et al. (2017) Premature Aortic Smooth Muscle Cell Differentiation Contributes to Matrix Dysregulation in Marfan Syndrome. PLOS ONE, 12, e0186603. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Rensen, S.S., Doevendans, P.A. and Van Eys, G.J. (2007) Regulation and Characteristics of Vascular Smooth Muscle Cell Phenotypic Diversity. Netherlands Heart Journal, 15, 100-108. [Google Scholar] [CrossRef]
|
|
[65]
|
Kim, H.R., Graceffa, P., Ferron, F., et al. (2010) Actin Polymerization in Differentiated Vascular Smooth Muscle Cells Requires Vasodilator-Stimulated Phosphoprotein. The American Journal of Physiology-Cell Physiology, 298, C559-C571. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Dahal, S., Swaminathan, G., Carney, S., et al. (2020) Pro-Elastogenic Effects of Mesenchymal Stem Cell Derived Smooth Muscle Cells in a 3D Collagenous Milieu. Acta Bi-omaterialia, 105, 180-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Psaltis, P.J., Simari, R.D. (2015) Vascular Wall Progenitor Cells in Health and Disease. Circulation Research, 116, 1392- 1412. [Google Scholar] [CrossRef]
|
|
[68]
|
Dahal, S., Broekelman, T., Mecham, R.P., et al. (2018) Maintaining Elastogenicity of Mesenchymal Stem Cell-Derived Smooth Muscle Cells in Two-Dimensional Culture. Tis-sue Engineering Part A, 24, 979-989. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Liu, M. and Gomez, D. (2019) Smooth Muscle Cell Phenotypic Di-versity. Arteriosclerosis, Thrombosis, and Vascular Biology, 39, 1715-1723. [Google Scholar] [CrossRef]
|
|
[70]
|
Erbel, R., Aboyans, V., Boileau, C., et al. (2014) 2014 ESC Guidelines on the Diagnosis and Treatment of Aortic Diseases: Document Covering Acute and Chronic Aortic Diseases of the Thoracic and Abdominal Aorta of the Adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). European Heart Journal, 35, 2873-2926. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Riches, K., Angelini, T.G., Mudhar, G.S., et al. (2013) Exploring Smooth Muscle Phenotype and Function in a Bioreactor Model of Abdominal Aortic Aneurysm. Journal of Translation-al Medicine, 11, 208. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Coppé, J.P., Desprez, P.Y., Krtolica, A., et al. (2010) The Senes-cence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology, 5, 99-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Nelson, G., Wordsworth, J., Wang, C., et al. (2012) A Senescent Cell Bystander Effect: Senescence-Induced Senescence. Aging Cell, 11, 345-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Minami, T., Kuwahara, K., Nakagawa, Y., et al. (2012) Reciprocal Expression of MRTF-A and Myocardin Is Crucial for Pathological Vascular Remodelling in Mice. The EMBO Journal, 31, 4428-4440. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Gao, P., Gao, P., Zhao, J., et al. (2021) MKL1 Cooperates with p38MAPK to Promote Vascular Senescence, Inflammation, and Abdominal Aortic Aneurysm. Redox Biology, 41, Article ID: 101903. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Brichkina, A., Bertero, T., Loh, H.M., et al. (2016) p38MAPK Builds a Hyaluronan Cancer Niche to Drive Lung Tumorigenesis. Genes & Development, 30, 2623-2636. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Moreno-Cugnon, L., Revuelta, M., Arrizabalaga, O., et al. (2019) Neuronal p38α Mediates Age-Associated Neural Stem Cell Exhaustion and Cognitive Decline. Aging Cell, 18, e13044. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Medema, R.H. and Macurek, L. (2011) Checkpoint Recovery in Cells: How a Molecular Understanding Can Help in the Fight against Cancer. F1000 Biology Reports, 3, Article No. 10. [Google Scholar] [CrossRef]
|
|
[79]
|
Vaziri, H., Dessain, S.K., Ng Eaton, E., et al. (2001) hSIR2(SIRT1) Functions as an NAD-Dependent p53 Deacetylase. Cell, 107, 149-159. [Google Scholar] [CrossRef]
|
|
[80]
|
Chen, H.Z., Wang, F., Gao, P., et al. (2016) Age-Associated Sirtuin 1 Reduction in Vascular Smooth Muscle Links Vascular Senescence and Inflammation to Abdominal Aortic An-eurysm. Circulation Research, 119, 1076-1088. [Google Scholar] [CrossRef]
|
|
[81]
|
Guo, W., Gao, R., Zhang, W., et al. (2019) IgE Aggra-vates the Senescence of Smooth Muscle Cells in Abdominal Aortic Aneurysm by Upregulating LincRNA-p21. Aging and Disease, 10, 699-710. [Google Scholar] [CrossRef]
|