|
[1]
|
Hawkins, T. and Kihara, D. (2007) Function Prediction of Uncharacterized Proteins. Journal of Bioinformatics and Computational Biology, 5, 1-30. [Google Scholar] [CrossRef]
|
|
[2]
|
Cruz L.M., Trefflich, S., Weiss, V.A. and Castro, M.A.A. (2017) Protein Function Prediction. In: Kaufmann, M., Klinger, C. and Savelsbergh, A., Eds., Functional Genomics, Humana Press, New York, 55-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Parada, L.F., Tabin, C.J., Shih, C. and Weinberg, R.A. (1982) Human EJ Bladder Carcinoma Oncogene Is Homologue of Harvey Sarcoma Virus Ras Gene. Nature, 297, 474-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hunter J.C., Gurbani, D., Ficarro, S.B., Carrasco, M.A., Lim, S.M., Choi, H.G., Xie, T., Marto, J.A., Chen, Z., Gray, N.S. and Westover, K.D. (2014) In Situ Selectivity Profiling and Crystal Structure of SML-8-73-1, an Active Site Inhibitor of Oncogenic K-Ras G12C. Proceedings of the National Academy of Sciences of the United States of America, 111, 8895-8900. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Hunter J.C., Manandhar, A., Carrasco, M.A., Gurbani, D., Gondi, S. and Westover, K.D. (2015) Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Molecular Cancer Research, 13, 1325-1335. [Google Scholar] [CrossRef]
|
|
[6]
|
McGee, J.H., Shim, S.Y., Lee, S.J., Swanson, P.K., Jiang, S.Y., Durney, M.A. and Verdine, G.L. (2018) Exceptionally High-Affinity Ras Binders That Remodel Its Effector Domain. The Journal of Biological Chemistry, 293, 3265-3280. [Google Scholar] [CrossRef]
|
|
[7]
|
Kauke, M.J., Traxlmayr, M.W., Parker, J.A., Kiefer, J.D., Knihtila, R., McGee, J., Verdine, G., Mattos, C. and Wittrup, K.D. (2017) An Engineered Protein Antagonist of K-Ras/B-Raf Interaction. Scientific Reports, 7, Article No. 5831. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Dhirendra, K.S., Dwight, V.N. and Frank, M. (2017) RAS Proteins and Their Regulators in Human Disease. Cell, 170, 17-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lu, S.Y., Jang, H., Gu, S., Zhang, J. and Nussinov, R. (2016) Drugging Ras GTPase: A Comprehensive Mechanistic and Signaling Structural View. Chemical Society Reviews, 45, 4929-4952. [Google Scholar] [CrossRef]
|
|
[10]
|
Maurer, T., Garrenton, L.S., Oh, A., Pitts, K., Anderson, D.J., Skelton, N.J., Fauber, B.P., Pan, B., Malek, S., Stokoe, D., Ludlam, M.J.C., Bowman, K.K., Wu, J.S., Giannetti, A.M., Starovasnik, M.A., Mellman, I., Jackson, P.K., Rudolph, J., Wang, W.R. and Fang, G.W. (2012) Small-Molecule Ligands Bind to a Distinct Pocket in Ras and Inhibit SOS-Mediated Nucleotide Exchange Activity. Proceedings of the National Academy of Sciences of the United States of America, 109, 5299-5304.
|
|
[11]
|
Hillig, R.C., Sautier, B., Schroeder, J., Moosmayer, D., Hilpmann, A., Stegmann, C.M., Werbeck, N.D., Briem, H., Boemer, U., Weiske, J., Badock, V., Mastouri, J., Petersen, K., Siemeister, G., Kahmann, J.D., Wegener, D., Böhnke, N., Eis, K., Graham, K., Wortmann, L., von Nussbaum, F. and Bader, B. (2019) Discovery of Potent SOS1 Inhibitors That Block RAS Activation via Disruption of the RAS-SOS1 Interaction. Proceedings of the National Academy of Sciences of the United States of America, 116, 2551-2560. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
李歆, 王义俊, 刘平羽. 特异靶向KRAS-G12C突变的抗肿瘤药物研究进展[J]. 药学学报, 2021, 56(2): 374-382. [Google Scholar] [CrossRef]
|
|
[13]
|
Mukhopadhyay, S., Vander, H.M.G. and McCormick, F. (2021) The Metabolic Landscape of RAS-Driven Cancers from Biology to Therapy. Nature Cancer, 2, 271-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Schubbert, S., Shannon, K. and Bollag, G. (2007) Hyperactive Ras in Developmental Disorders and Cancer. Nature Reviews Cancer, 7, 295-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liu, P.Y., Wang, Y.J. and Li, X. (2019) Targeting the Untargetable KRAS in Cancer Therapy. Acta Pharmaceutica Sinica B, 9, 871-879. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Douglas, H. and Robert, A.W. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Pylayeva-Gupta, Y., Grabocka, E. and Bar-Sagi, D. (2011) RAS Oncogenes: Weaving a Tumorigenic Web. Nature Reviews Cancer, 11, 761-774. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Ying, H.Q., Kimmelman, A.C., Lyssiotis, C.A., Hua, S.J., Chu, G.C., Fletcher-Sananikone, E., Locasale, J.W., Son, J., Zhang, H.L., Coloff, J.L., Yan, H.Y., Wang, W., Chen, S.J., Viale, A., Zheng, H.W., Paik, J., Lim, C., Guimaraes, A.R., Martin, E.S., Chang, J., Hezel, A.F., Perry, S.R., Hu, J., Gan, B.Y., Xiao, Y.H., Asara, J.M., Weissleder, R., Wang, Y.A., Chin, L., Cantley, L.C. and DePinho, R.A. (2012) Oncogenic Kras Maintains Pancreatic Tumors through Regulation of Anabolic Glucose Metabolism. Cell, 149, 656-670. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Weijzen, S., Velders, M.P. and Kast, W.M. (1999) Modulation of the Immune Response and Tumor Growth by Activated Ras. Leukemia, 13, 502-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Patricelli, M.P., Janes, M.R., Li, L.S., Hansen, R., Peters, U., Kessler, L.V., Chen, Y., Kucharski, J.M., Feng, J., Ely, T., Chen, J.H., Firdaus, S.J., Babbar, A., Ren, P.D. and Liu, Y. (2016) Selective Inhibition of Oncogenic KRAS Output with Small Molecules Targeting the Inactive State. Cancer Discovery, 6, 316-329. [Google Scholar] [CrossRef]
|
|
[21]
|
Bryant, K.L., Mancias, J.D., Kimmelman, A.C. and Der, C.J. (2014) KRAS: Feeding Pancreatic Cancer Proliferation. Trends in Biochemical Sciences, 39, 91-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hofmann, M.H., Gerlach, D., Misale, S., Petronczki, M. and Kraut, N. (2022) Expanding the Reach of Precision Oncology by Drugging All KRAS Mutants. Cancer Discovery, 12, 924-937. [Google Scholar] [CrossRef]
|
|
[23]
|
Haigis, K.M. (2017) KRAS Alleles: The Devil Is in the Detail. Trends in Cancer, 3, 686-697. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Reck, M., Carbone, D.P., Garassino, M. and Barlesi, F. (2021) Targeting KRAS in Non-Small Cell Lung Cancer: Recent Progress and New Approaches. Annals of Oncology, 32, 1101-1110. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Sun, Q., Burke, J.P., Phan, J., Burns, M.C., Olejniczak, E.T., Waterson, A.G., Lee, T., Rossanese, O.W. and Fesik, S.W. (2012) Discovery of Small Molecules That Bind to K-Ras and Inhibit Sos-Mediated Activation. Angewandte Chemie International Edition, 51, 6140-6143. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wu, H.Z., Xiao, J.Q., Xiao, S.S. and Cheng, Y. (2019) KRAS: A Promising Therapeutic Target for Cancer Treatment. Current Topics in Medicinal Chemistry, 19, 2081-2097. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ni, D., Li, X.Y., He, X.H., Zhang, H., Zhang, J. and Lu, S.Y. (2019) Drugging K-Ras G12C through Covalent Inhibitors: Mission Possible? Pharmacology and Therapeutics, 202, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Gupta, A.K., Wang, X., Pagba, C.V., Prakash, P., Sarkar-Banerjee, S., Putkey, J. and Gorfe, A.A. (2019) Multi-Target, Ensemble-Based Virtual Screening Yields Novel Allosteric KRAS Inhibitors at High Success Rate. Chemical Biology & Drug Design, 94, 1441-1456. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Huang, L.M., Guo, Z.X., Wang, F. and Fu, L.W. (2021) KRAS Mutation: From Undruggable to Druggable in Cancer. Signal Transduction and Targeted Therapy, 6, Article No. 386. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yan, W.P., Markegard, E., Dharmaiah, S., Urisman, A., Drew, M., Esposito, D., Scheffzek, K., Nissley, D.V., McCormick, F. and Simanshu, D.K. (2020) Structural Insights into the SPRED1-Neurofibromin-KRAS Complex and Disruption of SPRED1-Neurofibromin Interaction by Oncogenic EGFR. Cell Reports, 32, Article ID: 107909. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Nnadi, C.I., Jenkins, M.L., Gentile, D.R., Bateman, L.A., Zaidman, D., Balius, T.E., Nomura, D.K., Burke, J.E., Shokat, K.M. and Nir, L. (2018) Novel K-Ras G12C Switch-II Covalent Binders Destabilize Ras and Accelerate Nucleotide Exchange. Journal of Chemical Information and Modeling, 58, 464-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kettle, J.G., Bagal, S.K., Bickerton, S., Bodnarchuk, M.S., Breed, J., Carbajo, R.J., Cassar, D.J., Chakraborty, A., Cosulich, S., Cumming, I., Davies, M., Eatherton, A., Evans, L., Feron, L., Fillery, S., Gleave, E.S., Goldberg, F.W., Harlfinger, S., Hanson, L., Howard, M., Howells, R., Jackson, A., Kemmitt, P., Kingston, J.K., Lamont, S., Lewis, H.J., Li, S., Liu, L., Ogg, D., Phillips, C., Polanski, R., Robb, G., Robinson, D., Ross, S., Smith, J.M., Tonge, M., Whiteley, R., Yang, J., Zhang, L. and Zhao, X. (2020) Structure-Based Design and Pharmacokinetic Optimization of Covalent Allosteric Inhibitors of the Mutant GTPase KRASG12C. Journal of Medicinal Chemistry, 63, 4468-4483. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Dirk, K., Andreas, B., Jark, B., Gerhard, F., Sandra, D., Melanie, H., Barbara, M., Alexander, W.P. and McConnell, D.B. (2020) Drugging All RAS Isoforms with One Pocket. Future Medicinal Chemistry, 12, 1911-1923. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hansen, R., Peters, U., Babbar, A., Chen, Y., Feng, J., Janes, M.R., Li, L.S., Ren, P., Liu, Y. and Zarrinkar, P.P. (2018) The Reactivity-Driven Biochemical Mechanism of Covalent KRASG12C Inhibitors. Nature Structural & Molecular Biology, 25, 454-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Goebel, L., Mueller, M.P., Goody, R.S. and Rauh, D. (2020) KRasG12C Inhibitors in Clinical Trials: A Short Historical Perspective. RSC Medicinal Chemistry, 11, 760-770. [Google Scholar] [CrossRef]
|
|
[36]
|
Ostrem, J.M.L. and Shokat, K.M. (2016) Direct Small-Molecule Inhibitors of KRAS: From Structural Insights to Mechanism-Based Design. Nature Reviews Drug Discovery, 15, 771-785. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Mishto, M., Mansurkhodzhaev, A., Ying, G., Bitra, A., Cordfunke, R.A., Henze, S., Paul, D., Sidney, J., Urlaub, H., Neefjes, J., Sette, A., Zajonc, D.M. and Liepe, J. (2019) An in Silico—in Vitro Pipeline Identifying an HLA-A*02: 01+ KRAS G12V+ Spliced Epitope Candidate for a Broad Tumor-Immune Response in Cancer Patients. Frontiers in Immunology, 10, Article 2572. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kwan, A.K., Piazza, G.A., Keeton, A.B. and Leite, C.A. (2022) The Path to the Clinic: A Comprehensive Review on Direct KRASG12C Inhibitors. Journal of Experimental & Clinical Cancer Research, 41, Article No. 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Cox, A.D., Fesik, S.W., Kimmelman, A.C., Luo, J. and Der, C.J. (2014) Drugging the Undruggable RAS: Mission Possible? Nature Reviews Drug Discovery, 13, 828-851. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Désage, A.L., Léonce, C., Swalduz, A. and Ortiz, C.S. (2022) Targeting KRAS Mutant in Non-Small Cell Lung Cancer: Novel Insights into Therapeutic Strategies. Frontiers in Oncology, 12, Article 796832. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
许俨钊, 文辉, 崔华清. KRAS抑制剂的研究进展[J]. 药学学报, 2021, 56(6): 1562-1570. [Google Scholar] [CrossRef]
|
|
[42]
|
Bera, A.K., Lu, J., Lu, C., Li, L., Gondi, S., Yan, W., Nelson, A., Zhang, G. and Westover, K.D. (2020) GTP Hydrolysis Is Modulated by Arg34 in the RASopathy-Associated KRASP34R. Birth Defects Research, 112, 708-717. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Lu, J., Harrison, R.A., Li, L., Zeng, M., Gondi, S., Scott, D., Gray, N.S., Engen, J.R. and Westover, K.D. (2017) KRAS G12C Drug Development: Discrimination between Switch II Pocket Configurations Using Hydrogen/Deuterium-Exchange Mass Spectrometry. Structure, 25, 1442-1448.E3. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Ostrem, J.M., Peters, U., Sos, M.L., Wells, J.A. and Shokat, K.M. (2013) K-Ras (G12C) Inhibitors Allosterically Control GTP Affinity and Effector Interactions. Nature, 503, 548-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Janes, M.R., Zhang, J.C., Li, L.S., Hansen, R., Peters, U., Guo, X., Chen, Y.C., Babbar, A., Firdaus, S.J., Darjania, L., Feng, J., Chen, J.H., Li, S.W., Li, S.S., Long, Y.O., Thach, C., Liu, Y., Zarieh, A., Ely, T., Kucharski, J.M., Kessler, L.V., Wu, T., Yu, K., Wang, Y., Yao, Y., Deng, X.H., Zarrinkar, P.P., Brehmer, D., Dhanak, D., Lorenzi, M.V., Hu-Lowe, D., Patricelli, M.P., Ren, P. and Liu, Y. (2018) Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell, 172, 578-589.E17. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., Gaida, K., Holt, T., Knutson, C.G., Koppada, N., Lanman, B.A., Werner, J., Rapaport, A.S., San, M.T., Ortiz, R., Osgood, T., Sun, J.R., Zhu, X., McCarter, J.D., Volak, L.P., Houk, B.E., Fakih, M.G., O’Neil, B.H., Price, T.J., Falchook, G.S., Desai, J., Kuo, J., Govindan, R., Hong, D.S., Ouyang, W., Henary, H., Arvedson, T., Cee, V.J. and Lipford, J.R. (2019) The Clinical KRAS(G12C) Inhibitor AMG 510 Drives Anti-Tumour Immunity. Nature, 575, 217-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Boike, L., Henning, N.J. and Nomura, D.K. (2022) Advances in Covalent Drug Discovery. Nature Reviews Drug Discovery, 21, 881-898. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Wang, H., Chi, L.L., Yu, F.Q., Dai, H.L., Gao, C., Si, X.J., Wang, Z.J., Liu, L.M., Zheng, J.X., Shan, L.H., Liu, H.M. and Zhang, Q.R. (2023) Annual Review of KRAS Inhibitors in 2022. European Journal of Medicinal Chemistry, 249, Article ID: 115124. [Google Scholar] [CrossRef] [PubMed]
|