|
[1]
|
Volkeltigoe, M. (1992) The Origins and Evolution of Predator-Prey Theory. Ecology, 73, 1530-1535. [Google Scholar] [CrossRef]
|
|
[2]
|
Freedman, H.I. (1980) Deterministic Mathematical Models in Population Ecology. Biometrics, 22, 219-236.
|
|
[3]
|
May, R.M. (1974) Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton, NJ.
|
|
[4]
|
Wang, W.M., Liu, Q.X. and Jin, Z. (2007) Spatiotemporal Complexity of a Ratio-Dependent Predator-Prey System. Physical Review E, 75, Article 051913. [Google Scholar] [CrossRef]
|
|
[5]
|
Arditi, R., Ginzburg, L.R. and Akcakaya, H.R. (1991) Variation in Plankton Densities among Lakes: A Case for Ratio Dependent Predation Models. The American Naturalist, 138, 1287-1296. [Google Scholar] [CrossRef]
|
|
[6]
|
Ginzburg, L.R. and Akakaya, H.R. (1992) Consequences of Ratio Dependent Predation for
Steady State Properties of Ecosystems. Ecology, 73, 1536-1543.[CrossRef]
|
|
[7]
|
Akcakaya, H.R., Arditi, R. and Ginzburg, L.R. (1995) Ratio Dependent Predation: An Abstraction That Works. Ecology, 76, 995-1004. [Google Scholar] [CrossRef]
|
|
[8]
|
Cosner, C., Deangelis, D.L., Ault, J.S. and Olson, D.B. (1999) Effects of Spatial Grouping on the Functional Response of Predators. Theoretical Population Biology, 56, 65-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kumar, D. and Chakrabarty, S.P. (2015) A Comparative Study of Bioeconomic Ratio-
Dependent Predator-Prey Model with and without Additional Food to Predators. Nonlinear
Dynamics, 80, 23-38.[CrossRef]
|
|
[10]
|
Berezovskaya, F., Karev, G. and Arditi, R. (2001) Parametric Analysis of the Ratio-Dependent Predator-Prey Model. Journal of Mathematical Biology, 43, 221-246. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hsu, S.B., Hwang, T.W. and Kuang, Y. (2001) Global Analysis of the Michaelis-Menten-
Type Ratio-Dependent Predator-Prey System. Journal of Mathematical Biology, 42, 489-506.[CrossRef] [PubMed]
|
|
[12]
|
Jost, C., Arino, O. and Arditi, R. (1999) About Deterministic Extinction in Ratio-Dependent Predator-Prey Models. Bulletin of Mathematical Biology, 61, 19-32. [Google Scholar] [CrossRef]
|
|
[13]
|
Kuang, Y. (1999) Rich Dynamics of Gause-Type Ratio-Dependent Predator-Prey System.
Fields Institute Communications, 21, 325-337. [Google Scholar] [CrossRef]
|
|
[14]
|
Yang, K. and Beretta, E. (1998) Global Qualitative Analysis of a Ratio-Dependent Predator-Prey System. Journal of Mathematical Biology, 36, 389-406. [Google Scholar] [CrossRef]
|
|
[15]
|
Xiao, D.M. and Jennings, L.S. (2005) Bifurcations of A Ratio-Dependent Predator-Prey System with Constant Rate Harvesting. SIAM Journal on Applied Mathematics, 65, 737-753. [Google Scholar] [CrossRef]
|
|
[16]
|
Makinde, O.D. (2007) Solving Ratio-Dependent Predator-Prey System with Constant Effort Harvesting Using Adomian Decomposition Method. Applied Mathematics and Computation, 186, 17-22. [Google Scholar] [CrossRef]
|
|
[17]
|
Gao, X.Y., Ishag, S., Fu, S.M., Li, W.J. and Wang, W.M. (2020) Bifurcation and Turing Pattern Formation in a Diffusive Ratio-Dependent Predator-Prey Model with Predator Harvesting. Nonlinear Analysis, 51, Article 102962. [Google Scholar] [CrossRef]
|
|
[18]
|
Creel, S. and Christianson, D. (2008) Relationships between Direct Predation and Risk Effects. TREE, 23, 194-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zanette, L.Y. and Clinchy, M. (2011) Perceived Predation Risk Reduces the Number of Off-spring Songbirds Produce per Year. Science, 334, 1398-1401. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, X., Zanette, L. and Zou, X. (2016) Modelling the Fear Effect in Predator-Prey Interactions. Journal of Mathematical Biology, 73, 1179-1204. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Upadhyay, R. and Mishra, S. (2018) Population Dynamic Consequences of Fearful Prey in a Spatiotemporal Predator-Prey System. Mathematical Biosciences and Engineering, 16, 338-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hale, J.K. and Kocak, H. (1991) Dynamics and Bifurcations. Springer-Verlag, Berlin. [Google Scholar] [CrossRef]
|
|
[23]
|
Hassard, B.D., Kazarinoff, N.D. and Wan, Y.H. (1981) Theory and Applications of Hopf
Bifurcation. Cambridge University Press, Cambridge.
|