|
[1]
|
国家卫生健康委员会医政医管局, 中国抗癌协会脑胶质瘤专业委员会, 中国医师协会脑胶质瘤专业委员会. 脑胶质瘤诊疗指南(2022版) [J]. 中华神经外科杂志, 2022, 38(8): 757-777.
|
|
[2]
|
Laws, E.R., et al. (2003) Survival Following Surgery and Prognostic Factors for Recently Diagnosed Malignant Glioma: Data from the Glioma Outcomes Project. Journal of Neurosurgery, 99, 467-473. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Balaña, C., Capellades, J., Teixidor, P., et al. (2007) Clinical Course of High-Grade Glioma Patients with a “Biopsy-Only” Surgical Approach: A Need for Individualised Treatment. Clinical and Translational Oncology, 9, 797-803. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Stupp, R., Mason, W.P., Van den Bent, M.J., et al. (2005) Radi-otherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma. New England Journal of Medicine, 352, 987-996. [Google Scholar] [CrossRef]
|
|
[5]
|
Baluk, P., Hashizume, H. and McDonald, D.M. (2005) Cellular Abnormalities of Blood Vessels as Targets in Cancer. Current Opinion in Genetics & Development, 15, Article ID: 102111. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ferrara, N., Hillan, K., Gerber, H.-P. and Novotny, W. (2004) Discovery and Development of Bevacizumab, an Anti-VEGF Antibody for Treating Cancer. Nature Reviews Drug Discovery, 3, 391-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kim, K., Li, B., Winer, J., et al. (1993) Inhibition of Vascular Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumour Growth in Vivo. Nature, 362, 841-844. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
王海兰, 詹正宇, 冯苗, 钟陆行. 贝伐单抗治疗高级别脑胶质瘤的研究进展[J]. 中国肿瘤临床, 2013, 40(16): 1001-1004.
|
|
[9]
|
Klement, G., et al. (2000) Continuous Low-Dose Therapy with Vinblastine and Vegf Receptor-2 Antibody Induces Sustained Tumor Regression without Overt Toxicity. Journal of Clinical Investigation, 105, R15-R24. [Google Scholar] [CrossRef]
|
|
[10]
|
Jain, R.K. (2001) Normalizing Tumor Vasculature with Anti-Angiogenic Therapy: A New Paradigm for Combination Therapy. Nature Medicine, 7, 987-989. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhuang, H., Shi, S., Yuan, Z. and Chang, J.Y. (2019) Bevacizumab Treatment for Radiation Brain Necrosis: Mechanism, Efficacy and Issues. Molecular Cancer, 18, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Narita, Y. (2015) Bevacizumab for Glioblastoma. Therapeutics and Clinical Risk Management, 11, 1759-1765. [Google Scholar] [CrossRef]
|
|
[13]
|
Chinot, O.L., Nishikawa, R., Mason, W., Henriksson, R., Saran, F., Cloughesy, T., Garcia, J., Revil, C., Abrey, L. and Wick, W. (2016) Upfront Bevacizumab May Extend Survival for Glioblastoma Patients Who Do Not Receive Second-Line Therapy: An Exploratory Analysis of AVAglio. Neu-ro-Oncology, 18, 1313-1318. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Yang, S.-B., Gao, K.-D., Jiang, T., Cheng, S.-J. and Li, W.-B. (2017) Bevacizumab Combined with Chemotherapy for Glioblastoma: A Meta-Analysis of Randomized Controlled Trials. On-cotarget, 8, 57337-57344. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
牛牛, 李宝兰, 刘朝阳, 等. 重组人血管内皮抑制素联合贝伐珠单抗体内抑瘤作用的效果及分析[J]. 中国肺癌杂志, 2013, 16(2): 61-66.
|
|
[16]
|
Taal, W., Oosterkamp, H.M., Wal-enkamp, A.M., Dubbink, H.J., Beerepoot, L.V., Hanse, M.C., Buter, J., Honkoop, A.H., Boerman, D., de Vos, F.Y., et al. (2014) Single-Agent Bevacizumab or Lomustine Versus a Combination of Bevacizumab plus Lomustine in Patients with Recurrent Glioblastoma (BELOB Trial): A Randomised Controlled Phase 2 Trial. The Lancet Oncology, 15, 943-953. [Google Scholar] [CrossRef]
|
|
[17]
|
Friedman, H.S., Prados, M.D., Wen, P.Y., et al. (2009) Bevacizumab Alone and in Combination with Irinotecan in Recurrent Glioblastoma. Journal of Clinical Oncology, 27, 4733-4740. [Google Scholar] [CrossRef]
|
|
[18]
|
Torcuator, R., Zuniga, R., Mohan, Y.S., et al (2009) Initial Experience with Bevacizumab Treatment for Biopsy Confirmed Cerebral Radiation Necrosis. Journal of Neu-ro-Oncology, 94, 63-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jain, R.K. (2005) Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy. Science, 307, 58-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Chinot, O.L., Wick, W., Mason, W., et al (2014) Bevacizumab plus Radiotherapy-Temozolomide for Newly Diagnosed Glioblastoma. New England Journal of Medicine, 370, 709-722. [Google Scholar] [CrossRef]
|
|
[21]
|
Blumenthal, D.T., Mendel, L. and Bokstein, F. (2016) The Optimal Regimen of Bevacizumab for Recurrent Glioblastoma: Does Dose Matter? Journal of Neuro-Oncology, 127, 493-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Weathers, S.-P., Han, X., Liu, D.D., Conrad, C.A., Gilbert, M.R., Loghin, M.E., O’Brien, B.J., Penas-Prado, M., Puduvalli, V.K., Tremont-Lukats, I., et al. (2016) A Randomized Phase II Trial of Standard Dose Bevacizumab versus Low Dose Bevacizumab plus Lomustine (CCNU) in Adults with Recurrent Glioblastoma. Journal of Neuro-Oncology, 129, 487-494. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ajlan, A., Thomas, P., Albakr, A., Nagpal, S. and Recht, L. (2017) Optimizing Bevacizumab Dosing in Glioblastoma: Less Is More. Journal of Neuro-Oncology, 135, 99-105. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
García-Romero, N., et al. (2020) Bevacizumab Dose Adjustment to Improve Clinical Outcomes of Glioblastoma. BMC Medicine, 18, Article No. 142. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bag, A.K., Kim, H., Gao, Y., Bolding, M., Warren, P.P., Fath-allah-Shaykh, H.M., Gurler, D., Markert, J.M., Fiveash, J., Beasley, T.M., et al. (2015) Prolonged Treatment with Bevacizumab Is Associated with Brain Atrophy: A Pilot Study in Patients with High-Grade Gliomas. Journal of Neu-ro-Oncology, 122, 585-593. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhu, X.L., Wu, S.H., Dahut, W.L. and Parikh, C.R. (2007) Risks of Proteinuria and Hypertension with Bevacizumab, an Antibody against Vascular Endothelial Growth Factor: Systematic Review and Meta-Analysis. American Journal of Kidney Diseases, 49, 186-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Rana, P., Pritchard, K.I. and Kerbel, R. (2017) Plasma Vascular Endothelial Growth Factor as a Predictive Biomarker: Door Closed? European Journal of Cancer, 70, 143-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mair, M.J., Pajenda, S., Ilhan-Mutlu, A., et al. (2020) Soluble PD-L1 Is Associated with Local and Systemic Inflammation Markers in Primary and Secondary Brain Tumours. ESMO Open, 5, E000863. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ellingson, B.M., Sahebjam, S., Kim, H.J., Pope, W.B., Harris, R.J., Woodworth, D.C., et al. (2014) Pretreatment ADC Histogram Analysis Is a Predictive Imaging Biomarker for Bevacizumab Treatment but Not Chemotherapy in Recurrent Glioblastoma. American Journal of Neuroradiology, 35, 673-679. [Google Scholar] [CrossRef]
|
|
[30]
|
Wirsching, H.G., Roelcke, U., Weller, J., et al. (2021) MRI and 18FET-PET Predict Survival Benefit from Bevacizumab Plus Radiotherapy in Patients with Isocitrate Dehydrogenase Wild-Type Glioblastoma: Results from the Randomized ARTE Trial. Clinical Cancer Research, 27, 179-188. [Google Scholar] [CrossRef]
|
|
[31]
|
Quillien, V., et al. (2019) Absolute Numbers of Regulatory T Cells and Neutrophils in Corticosteroid-Free Patients Are Predictive for Response to Bevacizumab in Recurrent Glio-blastoma Patients. Cancer Immunology, Immunotherapy, 19, 871-882. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Mancuso, M.R., Davis, R., Norberg, S.M., et al. (2006) Rapid Vascular Regrowth in Tumors after Reversal of VEGF Inhibition. Journal of Clinical Investigation, 116, 2610-2621. [Google Scholar] [CrossRef]
|
|
[33]
|
Barlesi, F., Scherpereel, A., Rittmeyer, A., et al. (2013) Randomized Phase III Trial of Maintenance Bevacizumab with or without Pemetrexed after First-Line Induction with Bevacizumab, Cisplatin, and Pemetrexed in Advanced Nonsquamous Non-Small-Cell Lung Cancer: AVAPERL (MO22089). Journal of Clinical Oncology, 31, 3004-3011. [Google Scholar] [CrossRef]
|