|
[1]
|
Arnold, M., Abnet, C.C., Neale, R.E., et al. (2020) Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastro-enterology, 159, 335-349.e15. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
(2020) Erratum: Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 70, 313. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhou, J., Zheng, R., Zhang, S., et al. (2021) Colorectal Cancer Burden and Trends: Comparison between China and Major Burden Countries in the World. Chinese Journal of Cancer Research, 33, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chuang, J.P., Tsai, H.L., Chen, P.J., et al. (2022) Com-prehensive Review of Biomarkers for the Treatment of Locally Advanced Colon Cancer. Cells, 11, Article 3744. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Fabregas, J.C., Ramnaraign, B. and George, T.J. (2022) Clinical Up-dates for Colon Cancer Care in 2022. Clinical Colorectal Cancer, 21, 198-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yu, T., An, Q., Cao, X.L., et al. (2020) GOLPH3 Inhibition Re-verses Oxaliplatin Resistance of Colon Cancer Cells via Suppression of PI3K/AKT/mTOR Pathway. Life Sciences, 260, Article 118294. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Arredondo, J., Baixauli, J., Pastor, C., et al. (2017) Mid-Term On-cologic Outcome of a Novel Approach for Locally Advanced Colon Cancer with Neoadjuvant Chemotherapy and Sur-gery. Clinical and Translational Oncology, 19, 379-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Park, G.B., Chung, Y.H. and Kim, D. (2017) 2-Deoxy-D-Glucose Suppresses the Migration and Reverses the Drug Resistance of Colon Cancer Cells through ADAM Expression Regulation. Anti-Cancer Drugs, 28, 410-420. [Google Scholar] [CrossRef]
|
|
[9]
|
Guo, C., Ma, J., Deng, G., et al. (2017) ZEB1 Promotes Oxaliplatin Resistance through the Induction of Epithelial-Mesenchymal Transition in Colon Cancer Cells. Journal of Cancer, 8, 3555-3566. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, C., Liu, X., Jin, S., et al. (2022) Ferroptosis in Cancer Therapy: A Novel Approach to Reversing Drug Resistance. Molecular Cancer, 21, Article 47. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, R., Chen, Y., Liu, G., et al. (2020) PI3K/AKT Pathway as a Key Link Modulates the Multidrug Resistance of Cancers. Cell Death & Disease, 11, Article 797. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhou, F., Wang, L., Jin, K., et al. (2021) RecQ-Like Helicase 4 (RECQL4) Exacerbates Resistance to Oxaliplatin in Colon Adenocarcinoma via Activation of the PI3K/AKT Signaling Pathway. Bioengineered, 12, 5859-5869. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lu, H., Fang, E.F., Sykora, P., et al. (2014) Senescence In-duced by RECQL4 Dysfunction Contributes to Rothmund-Thomson Syndrome Features in Mice. Cell Death & Disease, 5, e1226. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Popuri, V., Tadokoro, T., Croteau, D.L., et al. (2013) Hu-man RECQL5: Guarding the Crossroads of DNA Replication and Transcription and Providing Backup Capability. Criti-cal Reviews in Biochemistry and Molecular Biology, 48, 289-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Arriagada, C., Luchsinger, C., González, A.E., et al. (2019) The Knocking Down of the Oncoprotein Golgi Phosphoprotein 3 in T98G Cells of Glioblastoma Multiforme Disrupts Cell Migration by Affecting Focal Adhesion Dynamics in a Focal Adhesion Kinase-Dependent Manner. PLOS ONE, 14, e0212321. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lu, J., Zhong, F., Sun, B., et al. (2019) Diagnostic Utility of Serum Golgi Phosphoprotein 3 in Bladder Cancer Patients. Medical Science Monitor, 25, 6736-6741. [Google Scholar] [CrossRef]
|
|
[17]
|
Rizzo, R., Parashuraman, S., D’Angelo, G., et al. (2017) GOLPH3 and Oncogenesis: What Is the Molecular Link? Tissue and Cell, 49, 170-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tang, S., Pan, H., Wei, W., et al. (2017) GOLPH3: A Novel Bi-omarker That Correlates with Poor Survival and Resistance to Chemotherapy in Breast Cancer. Oncotarget, 8, 105155-105169. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Liu, Y., Sun, Y. and Zhao, A. (2017) Mi-croRNA-134 Suppresses Cell Proliferation in Gastric Cancer Cells via Targeting of GOLPH3. Oncology Reports, 37, 2441-2448. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhou, X., Xue, P., Yang, M., et al. (2014) Protein Kinase D2 Promotes the Proliferation of Glioma Cells by Regulating Golgi Phosphoprotein 3. Cancer Letters, 355, 121-129. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, P., Chen, Z., Ning, K., et al. (2017) Inhibition of B7-H3 Reverses Oxaliplatin Resistance in Human Colorectal Cancer Cells. Biochemical and Biophysical Research Communica-tions, 490, 1132-1138. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hui, B., Lu, C., Wang, J., et al. (2022) Engineered Exosomes for Co-Delivery of PGM5-AS1 and Oxaliplatin to Reverse Drug Resistance in Colon Cancer. Journal of Cellular Physiology, 237, 911-933. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Xie, C., Zhang, L.Z., Chen, Z.L., et al. (2020) A hMTR4-PDIA3P1-miR-125/124-TRAF6 Regulatory Axis and Its Function in NF kappa B Signaling and Chemo-resistance. Hepatology, 71, 1660-1677. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cai, Q., Wang, S., Jin, L., et al. (2019) Long Non-Coding RNA GBCDRlnc1 Induces Chemoresistance of Gallbladder Cancer Cells by Activating Autophagy. Molecular Cancer, 18, Article No. 82. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Li, Q., Sun, H., Luo, D., et al. (2021) Lnc-RP11-536 K7.3/SOX2/HIF-1α Signaling Axis Regulates Oxaliplatin Resistance in Patient-Derived Colorectal Can-cer Organoids. Journal of Experimental & Clinical Cancer Research, 40, Article No. 348. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Sun, W.L., Kang, T., Wang, Y.Y., et al. (2019) Long Noncoding RNA OIP5-AS1 Targets Wnt-7b to Affect Glioma Progression via Modulation of miR-410. Bioscience Reports, 39, BSR20180395. [Google Scholar] [CrossRef]
|
|
[27]
|
Liang, J., Tian, X.F. and Yang, W. (2020) Effects of Long Non-Coding RNA Opa-Interacting Protein 5 Antisense RNA 1 on Colon Cancer Cell Resistance to Oxaliplatin and Its Regulation of microRNA-137. World Journal of Gastroenterology, 26, 1474-1489. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, P.L., Zhang, X., Wang, L.L., et al. (2015) MicroRNA-218 Is a Prognostic Indicator in Colorectal Cancer and Enhances 5-Fluorouracil-Induced Apoptosis by Targeting BIRC5. Car-cinogenesis, 36, 1484-1493. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhang, Z., Ma, J., Luan, G., et al. (2015) MiR-506 Suppresses Tumor Proliferation and Invasion by Targeting FOXQ1 in Nasopharyngeal Carcinoma. PLOS ONE, 10, e0122851. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhou, H., Lin, C., Zhang, Y., et al. (2017) miR-506 Enhances the Sensitivity of Human Colorectal Cancer Cells to Oxaliplatin by Suppressing MDR1/P-gp Expression. Cell Prolifera-tion, 50, e12341. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Oh, E.T, Kim, J.W., Kim, J.M., et al. (2016) NQO1 Inhib-its Proteasome-Mediated Degradation of HIF-1α. Nature Communications, 7, Article No. 13593. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tang, Y.A., Chen, Y.F., Bao, Y., et al. (2018) Hypoxic Tumor Micro-environment Activates GLI2 via HIF-1α and TGF-β2 to Promote Chemoresistance in Colorectal Cancer. Proceedings of the National Academy of Sciences of the United States of America, 115, E5990-E5999. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Xu, K., Zhan, Y., Yuan, Z., et al. (2019) Hypoxia Induces Drug Resistance in Colorectal Cancer through the HIF-1α/miR-338-5p/IL-6 Feedback Loop. Molecular Therapy, 27, 1810-1824. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wei, T.T., Lin, Y.T., Tang, S.P., et al. (2020) Metabolic Target-ing of HIF-1α Potentiates the Therapeutic Efficacy of Oxaliplatin in Colorectal Cancer. Oncogene, 39, 414-427. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Elaskalani, O., Razak, N.B., Falasca, M., et al. (2017) Epitheli-al-Mesenchymal Transition as a Therapeutic Target for Overcoming Chemoresistance in Pancreatic Cancer. World Jour-nal of Gastrointestinal Oncology, 9, 37-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lazarova, D. and Bordonaro, M. (2017) ZEB1 Mediates Drug Re-sistance and EMT in p300-Deficient CRC. Journal of Cancer, 8, 1453-1459. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhang, P., Sun, Y. and Ma, L. (2015) ZEB1: At the Crossroads of Epitheli-al-Mesenchymal Transition, Metastasis and Therapy Resistance. Cell Cycle, 14, 481-487. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Nakayama, M. and Oshima, M. (2019) Mutant p53 in Colon Cancer. Journal of Molecular Cell Biology, 11, 267-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Therachiyil, L., Haroon, J., Sahir, F., et al. (2020) Dysregulated Phos-phorylation of p53, Autophagy and Stemness Attributes the Mutant p53 Harboring Colon Cancer Cells Impaired Sensi-tivity to Oxaliplatin. Frontiers in Oncology, 10, Article 1744. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wu, J., Liang, Y., Tan, Y., et al. (2020) CDK9 Inhibitors Reactivate p53 by Downregulating iASPP. Cellular Signalling, 67, Ar-ticle 109508. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Huang, Y., Liu, N., Liu, J., et al. (2019) Mutant p53 Drives Cancer Chemotherapy Resistance Due to Loss of Function on Activating Transcription of PUMA. Cell Cycle, 18, 3442-3455. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
He, C., Li, L., Guan, X., et al. (2017) Mutant p53 Gain of Function and Chemoresistance: The Role of Mutant p53 in Response to Clinical Chemotherapy. Chemo-therapy, 62, 43-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kanno, Y., Watanabe, M., Kimura, T., et al. (2014) TRIM29 as a Novel Prostate Basal Cell Marker for Diagnosis of Prostate Cancer. Acta Histochemica, 116, 708-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lei, G., Liu, S., Yang, X., et al. (2021) TRIM29 Reverses Oxali-platin Resistance of P53 Mutant Colon Cancer Cell. Canadian Journal of Gastroenterology and Hepatology, 2021, Arti-cle ID: 8870907. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhou, Y., Tian, T., Zhu, Y., et al. (2017) Exosomes Transfer among Different Species Cells and Mediating miRNAs Delivery. Journal of Cellular Biochemistry, 118, 4267-4274. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zheng, Z., Li, Z., Xu, C., et al. (2019) Folate-Displaying Exosome Mediated Cytosolic Delivery of siRNA Avoiding Endosome Trapping. Journal of Controlled Release, 311-312, 43-49. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ma, Y., Temkin, S.M., Hawkridge, A.M., et al. (2018) Fatty Acid Oxidation: An Emerging Facet of Metabolic Transformation in Cancer. Cancer Letters, 435, 92-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Lin, D., Zhang, H., Liu, R., et al. (2021) iRGD-Modified Exo-somes Effectively Deliver CPT1A siRNA to Colon Cancer Cells, Reversing Oxaliplatin Resistance by Regulating Fatty Acid Oxidation. Molecular Oncology, 15, 3430-3446. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Yang, L., Hu, Y., Zhou, G., et al. (2020) Erianin Suppresses Hepa-tocellular Carcinoma Cells through Down-Regulation of PI3K/AKT, p38 and ERK MAPK Signaling Pathways. Biosci-ence Reports, 40, BSR20193137. [Google Scholar] [CrossRef]
|
|
[50]
|
Chen, P., Wu, Q., Feng, J., et al. (2020) Erianin, a Novel Dibenzyl Compound in Dendrobium Extract, Inhibits Lung Cancer Cell Growth and Migration via Calcium/Calmodulin-Dependent Ferroptosis. Signal Transduction and Targeted Therapy, 5, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Sun, Y., Li, G., Zhou, Q., et al. (2020) Dual Targeting of Cell Growth and Phagocytosis by Erianin for Human Colorectal Cancer. Drug Design, Development and Therapy, 14, 3301-3313. [Google Scholar] [CrossRef]
|
|
[52]
|
Su, C., Liu, S., Ma, X., et al. (2021) The Effect and Mechanism of Erianin on the Reversal of Oxaliplatin Resistance in Human Colon Cancer Cells. Cell Biology Internation-al, 45, 2420-2428. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Xu, F.Y., Shang, W.Q., Yu, J.J., et al. (2016) The An-titumor Activity Study of Ginsenosides and Metabolites in Lung Cancer Cell. American Journal of Translational Re-search, 8, 1708-1718.
|
|
[54]
|
Ma, J., Gao, G., Lu, H., et al. (2019) Reversal Effect of Ginsenoside Rh2 on Oxali-platin-Resistant Colon Cancer Cells and Its Mechanism. Experimental and Therapeutic Medicine, 18, 630-636. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Chun, J., Li, R.J., Cheng, M.S., et al. (2015) Alantolactone Selectively Suppresses STAT3 Activation and Exhibits Potent Anticancer Activity in MDA-MB-231 Cells. Cancer Letters, 357, 393-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Cao, P., Xia, Y., He, W., et al. (2019) Enhancement of Oxali-platin-Induced Colon Cancer Cell Apoptosis by Alantolactone, a Natural Product Inducer of ROS. International Journal of Biological Sciences, 15, 1676-1684. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Baricevic, I., Roberts, D.L. and Renehan, A.G. (2014) Chronic Insulin Ex-posure Does Not Cause Insulin Resistance but Is Associated with Chemo-Resistance in Colon Cancer Cells. Hormone and Metabolic Research, 46, 85-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Yang, I.P., Miao, Z.F., Huang, C.W., et al. (2019) High Blood Sugar Levels but Not Diabetes Mellitus Significantly Enhance Oxaliplatin Chemoresistance in Patients with Stage III Colorectal Cancer Receiving Adjuvant FOLFOX6 Chemotherapy. Therapeutic Advances in Medical Oncology, 11. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Liu, C., Liu, Q., Yan, A., et al. (2020) Metformin Revert Insu-lin-Induced Oxaliplatin Resistance by Activating Mitochondrial Apoptosis Pathway in Human Colon Cancer HCT116 Cells. Cancer Medicine, 9, 3875-3884. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Zhang, J., Chen, Y., Luo, H., et al. (2018) Recent Update on the Pharma-cological Effects and Mechanisms of Dihydromyricetin. Frontiers in Pharmacology, 9, Article 1204. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Wang, Z., Sun, X., Feng, Y., et al. (2021) Dihydromyricetin Re-verses MRP2-Induced Multidrug Resistance by Preventing NF-κB-Nrf2 Signaling in Colorectal Cancer Cell. Phytomedi-cine, 82, Article 153414. [Google Scholar] [CrossRef] [PubMed]
|