|
[1]
|
Venkatesan, P. (2023) GOLD COPD Report: 2023 Update. The Lancet Respiratory Medicine, 11, 18. [Google Scholar] [CrossRef]
|
|
[2]
|
Alderawi, A., Caramori, G., Baker, E.H., et al. (2020) FN3K Expression in COPD: A Potential Comorbidity Factor for Cardiovascular Disease. BMJ Open Respiratory Research, 7, e000714. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Regan, E.A., Hersh, C.P., Castaldi, P.J., et al. (2019) Omics and the Search for Blood Biomarkers in Chronic Obstructive Pulmonary Disease: Insights from COPD Gene. American Journal of Respiratory Cell and Molecular Biology, 61, 143-149. [Google Scholar] [CrossRef]
|
|
[4]
|
Labaki, W.W. and Rosenberg, S.R. (2020) Chronic Obstructive Pulmonary Disease. Annals of Internal Medicine, 173, ITC17-ITC32. [Google Scholar] [CrossRef]
|
|
[5]
|
何响, 孙泽蕊, 石雪峰. 肺表面活性蛋白D与慢性阻塞性肺疾病关系的研究进展[J]. 实用心脑肺血管病杂志, 2022, 30(9): 127-131.
|
|
[6]
|
Huang, Q., Wu, X., Gu, Y., et al. (2022) Detection of the Disorders of Glycerophospholip-ids and Amino Acids Metabolism in Lung Tissue from Male COPD Patients. Frontiers in Molecular Biosciences, 9, Ar-ticle ID: 839259. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gea, J., Enriquez-rodriguez, C.J. and Pascual-guardia, S. (2023) Metabolomics in COPD. Archivos de Bronconeumología, 59, 311-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Pulik, K., Mycroft, K., Korczynski, P., et al. (2023) Metabolomic Analysis of Respiratory Epithelial Lining Fluid in Patients with Chronic Obstructive Pulmonary Disease—A Systematic Review. Cells, 12, Article No. 833. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
中华医学会呼吸病学分会慢性阻塞性肺疾病学组, 中国医师协会呼吸医师分会慢性阻塞性肺疾病工作委员会. 慢性阻塞性肺疾病诊治指南(2021年修订版) [J]. 中华结核和呼吸杂志, 2021, 44(3): 36.
|
|
[10]
|
Pinson, M.R., Deutz, N., Harrykissoon, R., et al. (2021) Disturbances in Branched-Chain Amino Acid Profile and Poor Daily Functioning in Mildly Depressed Chronic Obstructive Pulmonary Disease Patients. BMC Pulmonary Medicine, 21, Article No. 351. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Wang, Y., Li, P., Cao, Y., et al. (2023) Skeletal Muscle Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: Underly-ing Mechanisms and Physical Therapy Perspectives. Aging and Disease, 14, 33-45. [Google Scholar] [CrossRef]
|
|
[12]
|
Arezina, R., Chen, T. and Wang, D. (2023) Conventional, Comple-mentary and Alternative Medicines: Mechanistic Insights into Therapeutic Landscape of Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease, 18, 447-457. [Google Scholar] [CrossRef]
|
|
[13]
|
Ran, N., Pang, Z., Gu, Y., et al. (2019) An Updated Overview of Metabolomic Profile Changes in Chronic Obstructive Pulmonary Disease. Metabolites, 9, 111. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Mangoni, A.A., Rodionov, R.N., Mcevoy, M., et al. (2019) New Ho-rizons in Arginine Metabolism, Ageing and Chronic Disease States. Age Ageing, 48, 776-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhou, B., Jiang, G.T., Liu, H., et al. (2021) Dysregulated Arginine Me-tabolism in Young Patients with Chronic Persistent Asthma and in Human Bronchial Epithelial Cells. Nutrients, 13, Arti-cle No. 4116. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Vogeli, A., Ottiger, M., Meier, M.A., et al. (2017) Asymmetric Dime-thylarginine Predicts Long-Term Outcome in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Dis-ease. Lung, 195, 717-727. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Maneechotesuwan, K., Wongkajornsilp, A., Adcock, I.M., et al. (2015) Simvastatin Suppresses Airway IL-17 and Upregulates IL-10 in Patients with Stable COPD. Chest, 148, 1164-1176. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Arshad, H., Siokis, A., Franke, R., et al. (2022) Repro-gramming of Amino Acid Metabolism Differs between Community-Acquired Pneumonia and Infection-Associated Ex-acerbation of Chronic Obstructive Pulmonary Disease. Cells, 11, Article No. 2283. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kotlyarova, A. (2021) Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Interna-tional Journal of Molecular Sciences, 22, Article No. 12803. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Celejewska-wojcik, N., Kania, A., Gorka, K., et al. (2021) Eicosanoids and Eosinophilic Inflammation of Airways in Stable COPD. International Journal of Chronic Obstructive Pulmonary Disease, 16, 1415-1424. [Google Scholar] [CrossRef]
|
|
[21]
|
Chen, H., Li, Z., Dong, L., et al. (2019) Lipid Metabolism in Chronic Obstructive Pulmonary Disease. International Journal of Chronic Obstructive Pulmonary Disease, 14, 1009-1018. [Google Scholar] [CrossRef]
|
|
[22]
|
Siskind, L.J., Kolesnick, R.N. and Colombini, M. (2006) Ceramide Forms Channels in Mitochondrial Outer Membranes at Physiologically Relevant Concentrations. Mitochondrion, 6, 118-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bodas, M., Pehote, G., Silverberg, D., et al. (2019) Autophagy Augmentation Alleviates Cigarette Smoke-Induced CFTR-Dysfunction, Ceramide-Accumulation and COPD-Emphysema Pathogenesis. Free Radical Biology and Medicine, 131, 81-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kim, H.Y., Lee, H.S., Kim, I.H., et al. (2022) Compre-hensive Targeted Metabolomic Study in the Lung, Plasma, and Urine of PPE/LPS-Induced COPD Mice Model. Interna-tional Journal of Molecular Sciences, 23, Article No. 2748. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
PintoI-plata, V., Casanova, C., Divo, M., et al. (2019) Plasma Metabo-lomics and Clinical Predictors of Survival Differences in COPD Patients. Respiratory Research, 20, Article No. 219. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nambiar, S., Tan, D., Clynick, B., et al. (2021) Untargeted Metabolomics of Human Plasma Reveal Lipid Markers Unique to Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. Proteomics: Clinical Applications, 15, e2000039. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gai, X., Guo, C., Zhang, L., et al. (2021) Serum Glycerophospholipid Profile in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 12, Article ID: 646010. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kim, D.J., Oh, J.Y., Rhee, C.K., et al. (2021) Metabolic Finger-printing Uncovers the Distinction between the Phenotypes of Tuberculosis Associated COPD and Smoking-Induced COPD. Frontiers in Medicine (Lausanne), 8, Article ID: 619077. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cai, C., Bian, X., Xue, M., et al. (2019) Eicosanoids Metabolized through LOX Distinguish Asthma-COPD Overlap from COPD by Metabolomics Study. International Journal of Chronic Obstructive Pulmonary Disease, 14, 1769-1778. [Google Scholar] [CrossRef]
|
|
[30]
|
Maniscalco, M., Paris, D., Melck, D.J., et al. (2018) Differential Di-agnosis between Newly Diagnosed Asthma and COPD Using Exhaled Breath Condensate Metabolomics: A Pilot Study. European Respiratory Journal, 51, Article ID: 1701825. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Maniscalco, M., Paris, D., Cuomo, P., et al. (2022) Metabo-lomics of COPD Pulmonary Rehabilitation Outcomes via Exhaled Breath Condensate. Cells, 11, Article No. 344. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Halper-stromberg, E., Gillenwater, L., Cruickshank-quinn, C., et al. (2019) Bronchoalveolar Lavage Fluid from COPD Patients Reveals More Compounds Associated with Disease than Matched Plasma. Metabolites, 9, Article No. 157. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Madapoosi, S.S., Cruickshank-quinn, C., Opron, K., et al. (2022) Lung Microbiota and Metabolites Collectively Associate with Clinical Outcomes in Milder Stage Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 206, 427-439. [Google Scholar] [CrossRef]
|
|
[34]
|
吕田田, 余亚辉, 余海艳, 等. 慢性阻塞性肺病稳定期模型大鼠支气管肺泡灌洗液的代谢组学研究[J]. 中国医院药学杂志, 2021, 41(19): 1955-1961.
|
|
[35]
|
Zhu, T., Li, S., Wang, J., et al. (2020) Induced Sputum Metabolomic Profiles and Oxidative Stress Are Associated with Chronic Ob-structive Pulmonary Disease (COPD) Severity: Potential Use for Predictive, Preventive, and Personalized Medicine. EPMA Journal, 11, 645-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Esther, C.J., O’neal, W.K., An-derson, W.H., et al. (2022) Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in COPD. Chest, 161, 1239-1249.
|
|
[37]
|
Liu, S.J., Ma, Y.L., Fang, F., et al. (2021) Metabonomics Research on Lung Tissue of Rats with Acute Exacerbation of Chronic Obstructive Pulmonary Disease Treated with Mineral Chinese Medicine Chloriti Lapis. China Journal of Chinese Materia Medica, 46, 3133-3143.
|