|
[1]
|
Boo, C., Winton, R.K., Conway, K.M. and Yip, N.Y. (2019) Membrane-Less and Non-Evaporative Desalination of Hypersaline Brines by Temperature Swing Solvent Extraction. Environmental Science & Technology Letters, 6, 359-364. [Google Scholar] [CrossRef]
|
|
[2]
|
Kaushal, S.S., Likens, G.E., Utz, R.M., Pace, M.L., Grese, M. and Yepsen, M. (2013) Increased River Alkalinization in the Eastern U.S. Environmental Science & Technology, 47, 10302-10311. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Stets, E.G., Lee, C.J., Lytle, D.A. and Schock, M.R. (2018) Increasing Chloride in Rivers of the Conterminous U.S. and Linkages to Potential Corrosivity and Lead Action Level Exceedances in Drinking Water. Science of the Total Environment, 613-614, 1498-1509. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kaushal, S.S. (2016) Increased Salinization Decreases Safe Drinking Water. Environmental Science & Technology, 50, 2765-2766. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Flörke, M., Bärlund, I., van Vliet, M.T.H., Bouwman, A.F. and Wada, Y. (2019) Analysing Trade-Offs between SDGs Related to Water Quality Using Salinity as a Marker. Current Opinion in Environmental Sustainability, 36, 96-104. [Google Scholar] [CrossRef]
|
|
[6]
|
Li, Y., Yang, Z., Yang, K., Wei, J., Li, Z., Ma, C., Yang, X., Wang, T., Zeng, G., Yu, G., Yu, Z. and Zhang, C. (2022) Removal of Chloride from Water and Wastewater: Removal Mechanisms and Recent Trends. Science of the Total Environment, 821, Article ID: 153174. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Yang, J.B., Jeong, B.C., Seo, S.I., Jeon, S.S., Choi, H.Y. and Lee, H.M. (2010) Outcome of Prostate Biopsy in Men Younger than 40 Years of Age with High Prostate-Specific Antigen (PSA) Levels. Korean Journal of Urology, 51, 21-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wu, X., Liu, Z. and Liu, X. (2013) Chloride Ion Removal from Zinc Sulfate Aqueous Solution by Electrochemical Method. Hydrometallurgy, 134-135, 62-65. [Google Scholar] [CrossRef]
|
|
[9]
|
Polo, A.M.S., Lopez-Penalver, J.J., Rivera-Utrilla, J., Von Gunten, U. and Sanchez-Polo, M. (2017) Halide Removal from Waters by Silver Nanoparticles and Hydrogen Peroxide. Science of the Total Environment, 607-608, 649-657. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
谭青, 李启厚, 刘志宏. 湿法炼锌过程中氟氯脱除技术研究现状[J]. 湿法冶金, 2015, 34(4): 264-269.
|
|
[11]
|
Sun, B., Liu, X., Liu, W., Zhang, D., Chen, L. and Yang, T. (2020) A Clean Process for Chloridion Removal from Manganese Sulfate Electrolyte Using Bismuthyl Sulfate. Hydrometallurgy, 198, Article ID: 105508. [Google Scholar] [CrossRef]
|
|
[12]
|
Dron, J. and Dodi, A. (2011) Comparison of Adsorption Equilibrium Models for the Study of Cl−, and Removal from Aqueous Solutions by an Anion Ex-change Resin. Journal of Hazardous Materials, 190, 300-307. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Abu-Arabi, M.K., Emeish, S. and Hudaib, B.I. (2013) Chloride Removal from Eshidiya Phosphate Mining Wastewater. Desalination and Water Treatment, 51, 1634-1640. [Google Scholar] [CrossRef]
|
|
[14]
|
Li, H., Chen, Y., Long, J., Jiang, D., Liu, J., Li, S., Qi, J., Zhang, P., Wang, J., Gong, J., Wu, Q. and Chen, D. (2017) Simultaneous Removal of Thallium and Chloride from a Highly Saline Industrial Wastewater Using Modified Anion Exchange Resins. Journal of Hazardous Materials, 333, 179-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Lv, L., Sun, P., Gu, Z., Du, H., Pang, X., Tao, X., Xu, R. and Xu, L. (2009) Removal of Chloride Ion from Aqueous Solution by ZnAl-NO3 Layered Double Hy-droxides as Anion-Exchanger. Journal of Hazardous Materials, 161, 1444-1449. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Paul, B. and Chang, W. (2020) Mayenite-to-Hydrocalumite Transformation for the Removal of Chloride from Salinized Groundwater and the Recycling Potential of Spent Hydrocalumite for Chromate Removal. Desalination, 474, Article ID: 114186. [Google Scholar] [CrossRef]
|
|
[17]
|
Lv, L., He, J., Wei, M., Evans, D.G. and Duan, X. (2006) Uptake of Chloride Ion from Aqueous Solution by Calcined Layered Double Hydroxides: Equilibrium and Kinetic Studies. Water Research, 40, 735-743. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hamidi, R., Kahforoushan, D. and Fatehifar, E. (2013) The Simultaneous Removal of Calcium, Magnesium and Chloride Ions from Industrial Wastewater Using Magnesi-um-Aluminum Oxide. Journal of Environmental Science and Health, Part A, 48, 1225-1230. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhao, Y., Hu, W., Chen, J. and Lv, L. (2011) Factors Influencing the Chloride Removal of Aqueous Solution by Calcined Layered Double Hydroxides. Desalination and Water Treatment, 36, 50-56. [Google Scholar] [CrossRef]
|
|
[20]
|
Kameda, T., Yoshioka, T., Mitsuhashi, T., Uchida, M. and Oku-waki, A. (2003) The Simultaneous Removal of Calcium and Chloride Ions from Calcium Chloride Solution Using Magnesium-Aluminum Oxide. Water Research, 37, 4045-4050. [Google Scholar] [CrossRef]
|
|
[21]
|
Yang, C.X., Yang, G.L., Shi, Y.J. and Chen, S.J. (2012) Study on Electrosorption Removal of Chloride Ion from Reclaimed Water. Advanced Materials Research, 356-360, 2015-2019. [Google Scholar] [CrossRef]
|
|
[22]
|
Hou, C.-H. and Huang, C.-Y. (2013) A Comparative Study of Electrosorption Selectivity of Ions by Activated Carbon Electrodes in Capacitive Deionization. Desalination, 314, 124-129. [Google Scholar] [CrossRef]
|
|
[23]
|
Rasines, G., Lavela, P., Macías, C., Zafra, M.C., Tirado, J.L. and Ania, C.O. (2015) Mesoporous Carbon Black-Aerogel Composites with Optimized Properties for the Electro-Assisted Removal of Sodium Chloride from Brackish Water. Journal of Electroanalytical Chemistry, 741, 42-50. [Google Scholar] [CrossRef]
|
|
[24]
|
Wang, H., Yuan, T., Huang, L., He, Y., Wu, B., Hou, L., Liao, Q. and Yang, W. (2020) Enhanced Chloride Removal of Phosphorus Doping in Carbon Material for Capacitive Deionization: Experimental Measurement and Theoretical Calculation. Science of the Total Environment, 720, Article ID: 137637. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Xiao, H.-F., Chen, Q., Cheng, H., Li, X.-M., Qin, W.-M., Chen, B.-S., Xiao, D. and Zhang, W.-M. (2017) Selective Removal of Halides from Spent Zinc Sulfate Electrolyte by Diffusion Dialysis. Journal of Membrane Science, 537, 111-118. [Google Scholar] [CrossRef]
|
|
[26]
|
Du, M.-G., Chen, Q., Gao, W.-T., Li, X.-M. and Zhang, W.-M. (2020) Selective Removal of Chloride from the Adipate Formation Bath in Foil Industry by Diffusion Dialysis. Separation and Purification Technology, 230, Article ID: 115871. [Google Scholar] [CrossRef]
|
|
[27]
|
Lin, W., Xuan, Z., Meng, Z. and Zhou, C.X. (2009) De-salination of Reclaimed Water by Nanofiltration in an Artificial Groundwater Recharge System. Journal of Water Supply: Research and Technology-Aqua, 58, 463-469. [Google Scholar] [CrossRef]
|
|
[28]
|
Suingil Choi, Z.Y., Hong, S. and Ahrf, K. (2001) The Effect of Co-Existing Ions and Surface Characteristics of Nanomembranes on the Removal of Nitrate and Fluoride. Desali-nation, 133, 53-64. [Google Scholar] [CrossRef]
|
|
[29]
|
Welch, B.C., McIntee, O.M., Myers, T.J., Greenberg, A.R., Bright, V.M. and George, S.M. (2021) Molecular Layer Deposition for the Fabrication of Desalination Mem-branes with Tunable Metrics. Desalination, 520, Article ID: 115334. [Google Scholar] [CrossRef]
|
|
[30]
|
Reid, C.E. and Breton, E.J. (1959) Water and Ion Flow across Cellulosic Membranes. Journal of Applied Polymer Science, 1, 133-143. [Google Scholar] [CrossRef]
|
|
[31]
|
Habib, S. and Weinman, S.T. (2021) A Review on the Synthesis of Fully Aromatic Polyamide Reverse Osmosis Membranes. Desalination, 502, Article ID: 114939. [Google Scholar] [CrossRef]
|
|
[32]
|
Peng, L.E., Yao, Z., Liu, X., Deng, B., Guo, H. and Tang, C.Y. (2019) Tailoring Polyamide Rejection Layer with Aqueous Carbonate Chemistry for Enhanced Membrane Separa-tion: Mechanistic Insights, Chemistry-Structure-Property Relationship, and Environmental Implications. Environ-mental Science & Technology, 53, 9764-9770. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Habib, S. and Weinman, S.T. (2021) A Review on the Synthesis of Fully Aromatic Polyamide Reverse Osmosis Membranes. Desalination, 502, Article ID: 114939. [Google Scholar] [CrossRef]
|
|
[34]
|
Wu, H., Zhang, X., Zhao, X.-T., Li, K., Yu, C.-Y., Liu, L.-F., Zhou, Y.-F. and Gao, C.-J. (2020) High-Flux Reverse Osmosis Membranes Fabricated with Hyperbranched Polymers via Novel Twice-Crosslinked Interfacial Polymerization Method. Journal of Membrane Science, 595, Article ID: 117480. [Google Scholar] [CrossRef]
|
|
[35]
|
Levanov, A.V., Isaikina, O.Y., Gasanova, R.B., Uzhel, A.S. and Lunin, V.V. (2019) Kinetics of Chlorate Formation during Ozonation of Aqueous Chloride Solutions. Chemosphere, 229, 68-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Levanov, A.V., Kuskov, I.V., Zosimov, A.V., Anti-penko, E.E. and Lunin, V.V. (2003) Acid Catalysis in Reaction of Ozone with Chloride Ions. Kinetics and Catalysis, 44, 740-746. [Google Scholar] [CrossRef]
|
|
[37]
|
Levanov, A.V., Kuskov, I.V., Koiaidarova, K.B., Zosimov, A.V., Antipenko, E.E. and Lunin, V.V. (2005) Catalysis of the Reaction of Ozone with Chloride Ions by Metal Ions in an Acidic Medium. Kinetics and Catalysis, 46, 138-143. [Google Scholar] [CrossRef]
|
|
[38]
|
Levanov, A.V. and Isaikina, O.Y. (2020) Mechanism and Kinetic Model of Chlorate and Perchlorate Formation during Ozonation of Aqueous Chloride Solutions. Industrial & Engineering Chemistry Research, 59, 14278-14287. [Google Scholar] [CrossRef]
|
|
[39]
|
Pignatello, J.J., Oliveros, E. and MacKay, A. (2006) Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36, 1-84. [Google Scholar] [CrossRef]
|
|
[40]
|
Liu, W., Zhang, R., Liu, Z. and Li, C. (2016) Removal of Chloride from Simulated Zinc Sulfate Electrolyte by Ozone Oxidation. Hydrometallurgy, 160, 147-151. [Google Scholar] [CrossRef]
|
|
[41]
|
Wang, D.-J., Yi, H.-H., Tang, X.-L., Wang, S.-M., Guo, W.-L. and Li, J.-T. (2019) Experimental Study on the Electrolytic Treatment of Ammonia and Chlorine in the Wastewater from the Precipitation of Rare Earth Carbonate. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41, 216-228. [Google Scholar] [CrossRef]
|
|
[42]
|
Cui, L., Li, G., Li, Y., Yang, B., Zhang, L., Dong, Y. and Ma, C. (2017) Electrolysis-Electrodialysis Process for Removing Chloride Ion in Wet Flue Gas Desulfurization Wastewater (DW): Influencing Factors and Energy Consumption Analysis. Chemical Engineering Research and Design, 123, 240-247. [Google Scholar] [CrossRef]
|
|
[43]
|
Xu, K., Peng, J., Chen, P., Gu, W., Luo, Y. and Yu, P. (2019) Preparation and Characterization of Porous Ti/SnO2- Sb2O3/PbO2 Electrodes for the Removal of Chloride Ions in Water. Processes, 7, 762-775. [Google Scholar] [CrossRef]
|
|
[44]
|
Lutze, H.V., Kerlin, N. and Schmidt, T.C. (2015) Sulfate Radi-cal-Based Water Treatment in Presence of Chloride: Formation of Chlorate, Inter-Conversion of Sulfate Radicals into Hydroxyl Radicals and Influence of Bicarbonate. Water Research, 72, 349-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zrinyi, N. and Pham, A.L. (2017) Oxidation of Benzoic Acid by Heat-Activated Persulfate: Effect of Temperature on Transformation Pathway and Product Distribution. Water Research, 120, 43-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hu, X., Zhu, F., Kong, L. and Peng, X. (2021) Sulfate Radical-Based Removal of Chloride Ion from Strongly Acidic Wastewater: Kinetics and Mechanism. Journal of Hazardous Materials, 410, Article ID: 124540. [Google Scholar] [CrossRef] [PubMed]
|