|
[1]
|
Herberman, R.B., Nunn, M.E., Holden, H.T. and Lavrin, D.H. (1975) Natural Cytotoxic Reactivity of Mouse Lymphoid Cells against Syngeneicand Allogeneic Tumors. II. Characterization of Effector Cells. International Journal of Cancer, 16, 230-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Herberman, R.B., Nunn, M.E. and Lavrin, D.H. (1975) Natural Cytotoxic Reactivity of Mouse Lymphoid Cells against Syngeneic Acid Allogeneictumors. I. Distribution of Re-activity and Specificity. International Journal of Cancer, 16, 216-229. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kiessling, R., Klein, E., Pross, H. and Wigzell, H. (1975) “Natural” Killer Cells in the Mouse. II. Cytotoxic Cells with Specificity for Mouse Moloney Leukemia Cells. Characteristics of the Killer Cell. European Journal of Immunology, 5, 117-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kiessling, R., Klein, E. and Wigzell, H. (1975) “Natural” Killer Cells in the Mouse. I. Cytotoxic Cells with Specificity for Mouse Moloney Leukemia Cells. Specificity and Distribution according to Genotype. European Journal of Immunology, 5, 112-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Cantoni, C., Wurzer, H., Thomas, C. and Vitale, M. (2020) Escape of Tumor Cells from the NK Cell Cytotoxic Activity. Journal of Leukocyte Biology, 108, 1339-1360. [Google Scholar] [CrossRef]
|
|
[6]
|
Voskoboinik, I., Whisstock, J.C. and Trapani, J.A. (2015) Per-forin and Granzymes: Function, Dysfunction and Human Pathology. Nature Reviews Immunology, 15, 388-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Takeda, K., Hayakawa, Y., Smyth, M.J., Kayagaki, N., Yamaguchi, N., Kakuta, S., et al. (2001) Involvement of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Insurveillance of Tumor Metastasis by Liver Natural Killer Cells. Nature Medicine, 7, 94-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Balsamo, M., Vermi, W., Parodi, M., Pietra, G., Manzini, C., Queirolo, P., Lonardi, S., Augugliaro, R., Moretta, A., Facchetti, F., et al. (2012) Melanoma Cells Become Resistant to NK-Cell-Mediated Killing When Exposed to NK-Cell Numbers Compatible with NK-Cell Infiltration in the Tumor. Eu-ropean Journal of Immunology, 42, 1833-1842. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Huntington, N.D., Cursons, J. and Rautela, J. (2020) The Can-cer-Natural Killer Cell Immunity Cycle. Nature Reviews Cancer, 20, 437-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Guerra, N., Tan, Y.X., Joncker, N.T., Choy, A., Gallardo, F., Xiong, N., Knoblaugh, S., Cado, D., Greenberg, N.M. and Raulet, D.H. (2008) NKG2D-Deficient Mice Are Defective in Tumor Surveillance in Models of Spontaneous Malignancy. Immunity, 28, 571-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kaiser, B.K., Yim, D., Chow, I.T., Gonzalez, S., Dai, Z., Mann, H.H., Strong, R.K., Groh, V. and Spies, T. (2007) Disulphide-Isomerase-Enabled Shedding of Tumour-Associated NKG2D Ligands. Nature, 447, 482-486. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zingoni, A., Molfetta, R., Fionda, C., Soriani, A., Paolini, R., Cippitelli, M., Cerboni, C. and Santoni, A. (2018) NKG2D and Its Ligands: “One for All, All for One”. Frontiers in Immunology, 9, Article 476. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Groh, V., Wu, J., Yee, C. and Spies, T. (2002) Tumour-Derived Soluble MIC Ligands Impair Expression of NKG2D and T-Cell Activation. Nature, 419, 734-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fiegler, N., Textor, S., Arnold, A., Rolle, A., Oehme, I., Breuhahn, K., Moldenhauer, G., Witzens-Harig, M. and Cerwenka, A. (2013) Downregulation of the Activating NKp30 Ligand B7-H6 by HDAC Inhibitors Impairs Tumor Cell Recognition by NK Cells. Blood, 122, 684-693. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Schlecker, E., Fiegler, N., Arnold, A., Altevogt, P., Rose-John, S., Moldenhauer, G., Sucker, A., Paschen, A., Von Strandmann, E.P., Textor, S., et al. (2014) Metalloprotease-Mediated Tumor Cell Shedding of B7-H6, the Ligand of the Natural Killer Cell-Activating Receptor NKp30. Cancer Research, 74, 3429-3440. [Google Scholar] [CrossRef]
|
|
[16]
|
Glasner, A., Ghadially, H., Gur, C., Stanietsky, N., Tsu-kerman, P., Enk, J. and Mandelboim, O. (2012) Recognition and Prevention of Tumor Metastasis by the NK Receptor NKp46/NCR1. The Journal of Immunology, 188, 2509-2515. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Cagnano, E., Hershkovitz, O., Zilka, A., Bar-Ilan, A., Golder, A., Sion-Vardy, N., Bogdanov-Berezovsky, A., Mandelboim, O., Benharroch, D. and Porgador, A. (2008) Expression of Ligands to NKp46 in Benign and Malignant Melanocytes. Journal of Investigative Dermatology, 128, 972-979. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Niehrs, A., Garcia-Beltran, W.F., Norman, P.J., Watson, G.M., Holze-mer, A., Chapel, A., Richert, L., Pommerening-Roser, A., Korner, C., Ozawa, M., et al. (2019) A Subset of HLA-DP Molecules Serve as Ligands for the Natural Cytotoxicity Receptor NKp44. Nature Immunology, 20, 1129-1137. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bottino, C., Castriconi, R., Pende, D., Rivera, P., Nanni, M., Car-nemolla, B., Cantoni, C., Grassi, J., Marcenaro, S., Reymond, N., et al. (2003) Identification of PVR (CD155) and Nec-tin-2 (CD112) as Cell Surface Ligands for the Human DNAM-1 (CD226) Activating Molecule. Journal of Experimental Medicine, 198, 557-567. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Zhang, Q., Bi, J., Zheng, X., Chen, Y., Wang, H., Wu, W., Wang, Z., Wu, Q., Peng, H., Wei, H., et al. (2018) Blockade of the Checkpoint Receptor TIGIT Prevents NK Cell Exhaustion and Elicits Potent Anti-Tumor Immunity. Nature Immunology, 19, 723-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Mamessier, E., Sylvain, A., Thibult, M.L., Houvenaeghel, G., Jacquemier, J., Castellano, R., Goncalves, A., Andre, P., Romagne, F., Thibault, G., et al. (2011) Human Breast Cancer Cells Enhance Self Tolerance by Promoting Evasion from NK Cell Antitumor Immunity. Journal of Clinical Investigation, 121, 3609-3622. [Google Scholar] [CrossRef]
|
|
[22]
|
Castriconi, R., Dondero, A., Bellora, F., Moretta, L., Castellano, A., Loca-telli, F., Corrias, M.V., Moretta, A. and Bottino, C. (2013) Neuroblastoma-Derived TGF-β1 Modulates the Chemokine Receptor Repertoire of Human Resting NK Cells. The Journal of Immunology, 190, 5321-5328. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Morvan, M.G. and Lanier, L.L. (2013) NK Cells and Cancer: You Can Teach Innatecells New Tricks. Nature Reviews Cancer, 16, 7-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Prager, I. and Watzl, C. (2019) Mechanisms of Natural Killer Cell-Mediated Cellular Cytotoxicity. Journal of Leukocyte Biology, 105, 1319-1329. [Google Scholar] [CrossRef]
|
|
[25]
|
Dewan, M.Z., Terunuma, H., Takada, M., Tanaka, Y., Abe, H., Sata, T., et al. (2007) Role of Natural Killer Cells in Hormone-Independent Rapid Tumor Formation and Spontaneous Metastasis of Breast Cancer Cells in Vivo. Breast Cancer Research and Treatment, 104, 267-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gras Navarro, A., Bjorklund, A.T. and Chekenya, M. (2015) Therapeutic Potentialand Challenges of Natural Killer Cells in Treatment of Solid Tumors. Frontiers in Immunology, 6, Article 202. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Palumbo, J.S., Talmage, K.E., Massari, J.V., La Jeunesse, C.M., Flick, M.J., Kombrinck, K.W., Hu, Z., Barney, K.A. and Degen, J.L. (2007) Tumor Cell-Associated Tissue Factor and Circulating Hemostatic Factors Cooperate to Increase Metastatic Potential through Naturalkiller Cell-Dependent and-Independent Mechanisms. Blood, 110, 133-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cekic, C., Day, Y.J., Sag, D. and Linden, J. (2014) Myeloid Expression of Adenosine A2A Receptor Suppresses T and NK Cell Responses in the Solid Tumor Microenvironment. Cancer Research, 74, 7250-7259. [Google Scholar] [CrossRef]
|
|
[29]
|
Dutta, A., Banerjee, A., Saikia, N., et al. (2015) Negative Regulation of Naturalkiller Cell in Tumor Tissue and Peripheral Blood of Oral Squamous Cellcarcinoma. Cytokine, 76, 123-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Conroy, M.J., Fitzgerald, V., Doyle, S.L., et al. (2016) The Microenvironment of Visceral Adipose Tissue and Liver Alter Natural Killer Cell Viability and Function. Journal of Leukocyte Biology, 100, 1435-1442. [Google Scholar] [CrossRef]
|
|
[31]
|
Kloss, S., Chambron, N., Gardlowski, T., et al. (2015) Cetuxi-mab Reconstitutes Pro-Inflammatory Cytokine Secretions and Tumor-Infiltrating Capabilities of sMICA-Inhibited NK Cells in HNSCC Tumor Spheroid. Frontiers in Immunology, 6, Article 543. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wennerberg, E., Sarhan, D., Carlsten, M., et al. (2013) Doxorubi-cin Sensitizes Human Tumor Cells to NK Cell- and T-Cell-Mediated Killing by Augmented TRAIL Receptor Signaling. International Journal of Cancer, 133, 1643-1652. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Suck, G., Oei, V.Y., Linn, Y.C., Ho, S.H., Chu, S., Choong, A., Niam, M. and Koh, M.B. (2011) Interleukin-15 Supports Generation of Highly Potent Clinical-Grade Natural Killer Cells in Long-Term Cultures for Targeting Hematological Malignancies. Experimental Hematology, 39, 904-914. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Brehm, C., Huenecke, S., Quaiser, A., Esser, R., Bremm, M., Kloess, S., Soerensen, J., Kreyenberg, H., Seidl, C., Becker, P.S., et al. (2011) IL-2 Stimulated but Not Unstimulated NK Cells Induce Selective Disappearance of Peripheral Blood Cells: Concomitant Results to a Phase I/II Study. PLOS ONE, 6, e27351. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hu, W., Wang, G., Huang, D., Sui, M. and Xu, Y. (2019) Can-cer Immunotherapy Based on Natural Killer Cells: Current Progress and New Opportunities. Frontiers in Immunology, 10, Article 1205. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sakamoto, N., Ishikawa, T., Kokura, S., Okayama, T., Oka, K., Ideno, M., Sakai, F., Kato, A., Tanabe, M., Enoki, T., et al. (2015) Phase I Clinical Trial of Autologous NK Cell Therapy Using Novel Expansion Method in Patients with Advanced Digestive Cancer. Journal of Translational Medicine, 13, Article No. 277. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Luevano, M., Daryouzeh, M., Alnabhan, R., Querol, S., Khakoo, S., Madrigal, A. and Saudemont, A. (2012) The Unique Profile of Cord Blood Natural Killer Cells Balances Incomplete Maturation and Effective Killing Function upon Activation. Human Immunology, 73, 248-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Cavazzana-Calvo, M., Hacein-Bey, S., de Saint Basile, G., De Coene, C., Selz, F., Le Deist, F. and Fischer, A. (1996) Role of Interleukin-2 (IL-2), IL-7, and IL-15 in Natural Killer Cell Differentiation from Cord Blood Hematopoietic Progenitor Cells and from γ c Transduced Severe Combined Immu-nodeficiency X1 Bone Marrow Cells. Blood, 88, 3901-3909. [Google Scholar] [CrossRef]
|
|
[39]
|
Mehta, R.S., Shpall, E.J. and Rezvani, K. (2015) Cord Blood as a Source of Natural Killer Cells. Frontiers in Medicine, 2, Article 93. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Knorr, D.A., Ni, Z., Hermanson, D., Hexum, M.K., Bendzick, L., Cooper, L.J., Lee, D.A. and Kaufman, D.S. (2013) Clinical-Scale Derivation of Natural Killer Cells from Human Plu-ripotent Stem Cells for Cancer Therapy. Stem Cells Translational Medicine, 2, 274-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Dezell, S.A., Ahn, Y.O., Spanholtz, J., Wang, H., Weeres, M., Jack-son, S., Cooley, S., Dolstra, H., Miller, J.S. and Verneris, M.R. (2012) Natural Killer Cell Differentiation from Hemato-poietic Stem Cells: A Comparative Analysis of Heparin- and Stromal Cell-Supported Methods. Transplantation and Cellular Therapy, 18, 536-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Woll, P.S., Grzywacz, B., Tian, X., Marcus, R.K., Knorr, D.A., Verneris, M.R. and Kaufman, D.S. (2009) Human Embryonic Stem Cells Differentiate into a Homogeneous Population of Natural Killer Cells with Potent in Vivo Antitumor Activity. Blood, 113, 6094-6101. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Knorr, D.A. and Kaufman, D.S. (2010) Pluripotent Stem Cell-Derived Natural Killer Cells for Cancer Therapy. Translational Research, 156, 147-154. [Google Scholar] [CrossRef] [PubMed]
|