|
[1]
|
HENDRICKX, J. M. H., FLURY, M. Uniform and preferential flow mechanisms in the vadose zone. In: National Research Council: Conceptual Models of Flow and Transport in the Fractured Vadose Zone, Washington DC: National Academy Press, 2001: 149-187.
|
|
[2]
|
ALLAIRE, S. E., ROULIER, S. and CESSNA, A. Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology, 2009, 378(1-2): 179-204.
|
|
[3]
|
HANGEN, E., GERKE, H. H., SCHAAF, W., et al. Flow path visualization in a lignitic mine soil using iodine-starch staining. Geodema, 2004, 120(1-2): 121-135.
|
|
[4]
|
VAN OMMEN, H. C., DEKKER, L.W., DIJKSMA, R., et al. A new technique for evaluating the presence of preferential flow paths in nonstructured soils. Soil Science Society of America Journal, 1988, 52(4): 1192-1193.
|
|
[5]
|
ŠIMŮNEK, J., JARVIS, N. J., VAN GENUCHTEN, M. T., et al. Review and comparison of models for describing non-equilib- rium and preferential flow and transport in the vadose zone. Journal of Hydrology, 2003, 272(1-4): 14-35.
|
|
[6]
|
LIU, H., ZHANG, R. and BODVARSSON, G. S. An active region model for capturing fractal flow patterns in unsaturated soils: Model development. Journal of Contaminant Hydrology, 2005, 80(1-2): 18-30.
|
|
[7]
|
MANDELBROT, B. B. The fractal geometry of nature. New York: W.H. Freeman, 1982.
|
|
[8]
|
SMITH, J. E., ZHANG, Z. F. Determining effective interfacial tension and predicting finger spacing for DNAPL penetration into water-saturated porous media. Journal of Contaminant Hydrology, 2001, 48(1-2): 167-183.
|
|
[9]
|
BASILE, A., COPPOLA, A., DE MASCELLIS, R., et al. Scaling approach to deduce field unsaturated hydraulic properties and behavior from laboratory measurements on small cores. Vadose Zone Journal, 2006, 5(3): 1005-1016.
|
|
[10]
|
MORRIS, C., MOONEY, S. J. A high-resolution system for the quantification of preferential flow in undisturbed soil using observations of tracers. Geoderma, 2004, 118(1-2): 133-143.
|
|
[11]
|
SHENG, F., WANG, K., ZHANG, R., et al. Characterizing soil preferential flow using iodine-starch staining experiments and the active region model. Journal of Hydrology, 2009, 367(1-2): 115-124.
|
|
[12]
|
盛丰, 张仁铎, 刘会海. 基于分形理论的土壤优先流运动控制方程[J]. 农业工程学报, 2011, 27(2): 52-56.
SHENG Feng, ZHANG Renduo and LIU Huihai. Governing equations for modeling preferential flow in unsaturated soil based on fractal theory. Transaction of CSAE, 2011, 27(2): 52-56. (in Chinese)
|
|
[13]
|
VAN GENUCHTEN, M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 1980, 44(5): 892-898.
|
|
[14]
|
VAN GENUCHTEN, M. T., WIERENGA, P. J. Mass transfer studies in sorbing porous media. I. Analytical solutions. Soil Science Society of America Journal, 1976, 40(4): 473-481.
|
|
[15]
|
VAN GENUCHTEN, M. T., LEIJ, F. J. and YATES, S. R. The RETC code for quantifying the hydraulic functions of unsaturated soils. US Environmental Protection Agency, 1991.
|
|
[16]
|
VANYSEK, P. Ionic conductivity and diffusion at infinite dilution. In: LIDE, D. R., Ed., CRC Handbook of Chemistry and Physics, 83rd Editon, Boca Raton: CRC Press, 2002.
|
|
[17]
|
ŠIMŮNEK, J., VOGEL, T. and VAN GENUCHTEN, M. T. The SWMS_2D code for simulating water flow and solute transport in two-dimensional variably saturated media. Version 1.21, Research Report No. 132, Riverside: US Salinity Laboratory, 1994.
|
|
[18]
|
LARSSON, M. H., JARVIS, N. J., TORSTENSSON, G., et al. Quantifying the impact of preferential flow on solute transport to tile drains in a sandy field soil. Journal of Hydrology, 1999, 215(1-4): 116-134.
|
|
[19]
|
VAN DAM, J. C., WOSTEN, J. H. M. and NEMES, A. Unsaturated soil water movement in hysteretic and water repellent field soils. Journal of Hydrology, 1996, 184(3-4): 153-173.
|
|
[20]
|
WANG, K., ZHANG, R. and YASUDA, H. Characterizing heterogeneous soil water flow and solute transport using information measures. Journal of Hydrology, 2009, 370(1-4): 109-121.
|