|
[1]
|
Cui, L., Wu, J. and Ju, H. (2015) Electrochemical Sensing of Heavy Metal Ions with Inorganic, Organic and Bio-Materials. Biosensors and Bioelectronics, 63, 276-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rana, S., Kumar, T., Bansod, B.K., et al. (2017) A Review on Various Electrochemical Techniques for Heavy Metal Ions De-tection with Different Sensing Platforms. Biosensors & Bioelectronics, 94, 443-455. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gan, X., Zhao, H., Wong, K.Y., Lei, D.Y., Zhang, Y. and Quan, X. (2018) Covalent Functionalization of MoS2 Nanosheets Synthesized by Liquid Phase Exfoliation to Construct Electro-chemical Sensors for Cd (II) Detection. Talanta, 182, 38-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Incebay, H., Aktepe, L. and Leblebici, Z. (2020) An Electro-chemical Sensor Based on Green Tea Extract for Detection of Cd (ii) Ions by Differential Pulse Anodic Stripping Volt-ammetry. Surfaces and Interfaces, 21, Article ID: 100726. [Google Scholar] [CrossRef]
|
|
[5]
|
Priya, T., Dhanalakshmi, N., Thennarasu, S., Pulikkutty, S. and Thinakaran, N. (2020) Synchronous Detection of Cadmium and Lead in Honey, Cocos Nucifera and Egg White Samples Using Multiwalled Carbon Nanotube/Hyaluronic Acid/Amino Acids Nanocomposites. Food Chemistry, 317, Article ID: 126430. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Wang, X.F., Gao, W.Y., Yan, W., Li, P., Zou, H.H., Wei, Z.X., Guan, W.J., Ma, Y.H., Wu, S.M., Yu, Y. and Ding, K. (2018) A Novel Aptasensor Based on Graphene/Graphite Carbon Nitride Nanocomposites for Cadmium Detection with High Selectivity and Sensitivity. ACS Applied Nano Mate-rials, 1, 2341-2346. [Google Scholar] [CrossRef]
|
|
[7]
|
Rusinek, C.A., Bange, A., Papautsky, I. and Heineman, W.R. (2015) Cloud Point Extraction for Electroanalysis: Anodic Stripping Voltammetry of Cadmium. Analytical Chemistry, 87, 6133-6140. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Khairy, M., El-Safty, S.A. and Shenashen, M. (2014) Envi-ronmental Remediation and Monitoring of Cadmium. TrAC Trends in Analytical Chemistry, 62, 56-68. [Google Scholar] [CrossRef]
|
|
[9]
|
Yu, H., Ai, X., Xu, K., Zheng, C. and Hou, X. (2016) Uv-Assisted Fenton Digestion of Rice for the Determination of Trace Cadmium by Hydride Generation Atomic Fluorescence Spec-trometry. Analyst, 141, 1512-1518. [Google Scholar] [CrossRef]
|
|
[10]
|
Rehan I., Gondal, M.A., Almessiere, M.A., Dakheel, R.A., Rehan, K., Sultana, S. and Dastageer, M.A. (2021) Nutritional and Toxic Elemental Analysis of Dry Fruits Using Laser Induced Breakdown Spectroscopy (LIBS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Saudi Journal of Biological Sciences, 28, 408-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Mozhayeva, D. and Engelhard, C. (2020) A Critical Review of Sin-gle Particle Inductively Coupled Plasma Mass Spectrometry—A Step towards an Ideal Method for Nanomaterial Charac-terization. Journal of Analytical Atomic Spectrometry, 35, 1740-1783. [Google Scholar] [CrossRef]
|
|
[12]
|
Stenclova, P., Vyskocil, V., Szabo, O., Izak, T., Potocky, S. and Kromka, A. (2019) Structured and Graphitized Boron Doped Diamond Electrodes: Impact on Electrochemical Detection of Cd2+ and Pb2+ Ions. Vacuum, 170, Article ID: 108953. [Google Scholar] [CrossRef]
|
|
[13]
|
Kolling, L., Zmozinski, A.V., Vale, M.G.R. and da Silva, M.M. (2019) The Use of Dried Matrix Spot for Determination of Pb and Ni in Automotive Gasoline by Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Talanta, 205, Article ID: 120105. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Sung, Y.M. and Wu, S.P. (2014) Colorimetric Detection of Cd (II) Ions Based on Di-(1H-Pyrrol-2-yl) Methanethione Functionalized Gold Nanoparticles. Sensors & Actuators B: Chemical, 201, 86-91. [Google Scholar] [CrossRef]
|
|
[15]
|
Zhang, D., Yang, S., Ma, Q., Sun, J. and Liu, J. (2019) Simultane-ous Multi-Elemental Speciation of As, Hg and Pb by Inductively Coupled Plasma Mass Spectrometry Interfaced with High-Performance Liquid Chromatography. Food Chemistry, 313, Article ID: 126119. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Celestina, J.J., Tharmaraj, P. and Sheela, C.D. (2020) Greener Development of Highly Selective Turn-on Fluorogenic Chemo Sensor for Cd2+—Cell Imaging and Test Strips Studies. Optical Materials, 109, Article ID: 110176. [Google Scholar] [CrossRef]
|
|
[17]
|
Liu, Y., Li, T., Ling, C., Chen, Z., Deng, Y. and He, N. (2019) Electrochemical Sensor for Cd2+ and Pb2+ Detection Based on Nano-Porous Pseudo Carbon Paste Electrode. Chinese Chemical Letters, 30, 2211-2215. [Google Scholar] [CrossRef]
|
|
[18]
|
Yu, L., Zhang, Q., Yang, B., Xu, Q., Xu, Q. and Hu, X. (2018) Electrochemical Sensor Construction Based on Nafion/Calcium Lignosulphonate Functionalized Porous Graphene Nanocomposite and Its Application for Simultaneous Detection of Trace Pb2+ and Cd2+. Sensors & Actuators B: Chemi-cal, 259, 540-551. [Google Scholar] [CrossRef]
|
|
[19]
|
Magesa, F., Wu, Y., Tian, Y., Vianney, J.M., Buza, J., He, Q. and Tan, Y. (2019) Graphene and Graphene Like 2D Graphitic Carbon Nitride: Electrochemical Detection of Food Colorants and Toxic Substances in Environment. Trends in Environmental Analytical Chemistry, 23, e00064. [Google Scholar] [CrossRef]
|
|
[20]
|
Alex, L., Eden, E.L. and Richard, G. (2017) Recent Developments in Inorganic Hg2+ Detection by Voltammetry. TrAC Trends in Analytical Chemistry, 94, 161-172. [Google Scholar] [CrossRef]
|
|
[21]
|
Lu, M.X., Deng, Y.J., Luo, Y., Lv, J.P., Wang, J.Y., et al. (2018) Graphene Aerogel-Metal-Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy Metal Ions. Analytical Chemistry, 91, 888-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xia, Y.X., Ma, Y.Z., Wu, Y.T., Yi, Y.H., Lin, H.Y. and Zhu, G.B. (2021) Free-Electrodeposited Anodic Stripping Voltammetry Sensing of Cu (II) Based on Ti3C2Tx MXene/Carbon Black. Microchimica Acta, 188, Article No. 377. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pizarro, J., Segura, R., Tapia, D., Navarro, F., Fuenzalida, F. and Aguirre, M.J. (2020) Inexpensive and Green Electrochemical Sensor for the Determination of Cd (II) and Pb (II) by Square Wave Anodic Stripping Voltammetry in Bivalve Mollusks. Food Chemistry, 321, Article ID: 126682. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sun, D.R. and Li, Z.H. (2016) Double-Solvent Method to Pd Nanoclusters Encapsulated Inside the Cavity of NH2-Uio-66(Zr) for Efficient Visible-Light-Promoted Suzuki Coupling Reaction. Journal of Physical Chemistry C, 120, 19744-19750. [Google Scholar] [CrossRef]
|
|
[25]
|
Yang, Q., Xu, Q. and Jiang, H.L. (2017) Metal-Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect for En-hanced Catalysis. Chemical Society Reviews, 46, 4774-4808. [Google Scholar] [CrossRef]
|
|
[26]
|
Hu, Z., Deibert, B.J. and Li, J. (2014) Luminescent Metal-Organic Frameworks for Chemical Sensing and Explosive Detection. Chemical Society Reviews, 43, 5815-5840. [Google Scholar] [CrossRef]
|
|
[27]
|
Yi, F.Y., Chen, D., Wu, M.K., Han, L. and Jiang, H.L. (2016) Chemical Sensors Based on Metal-Organic Frameworks. ChemPlusChem, 81, 675-690. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, C., Luan, J. and Wu, C. (2019) Metal-Organic Frameworks for Aquatic Arsenic Removal. Water Research, 158, 370-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Qiu, H., Ye, M., Zeng, Q., Li, W., Fortner, J., Liu, L.L. and Yang, L.Y. (2019) Fabrication of Agricultural Waste Supported UiO-66 Nanoparticles with High Utilization in Phos-phate Removal from Water. Chemical Engineering Journal, 360, 621-630. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, Y., Wang, L., Huang, W., Zhang, T., Hu, X., Perman, J.A. and Ma, S. (2017) A Metal-Organic Framework and Conducting Polymer Based Electrochemical Sensor for High Per-formance Cadmium Ion Detection. Journal of Materials Chemistry A, 5, 8385-8393. [Google Scholar] [CrossRef]
|
|
[31]
|
Wan, X., Qi, Y., Shen, Y., Yuan, Y., Zhang, L., Zhang, C. and Sun, Y. (2020) A Ratiometric Electrochemical Sensor for Simultaneous Detection of Multiple Heavy Metal Ions Based on Ferro-cene-Functionalized Metal-Organic Framework. Sensors and Actuators B: Chemical, 310, Article ID: 127756. [Google Scholar] [CrossRef]
|
|
[32]
|
Wu, T.M., Chang, H.L. and Lin, Y.W. (2009) Synthesis and Char-acterization of Conductive Polypyrrole/Multi-Walled Carbon Nanotubes Composites with Improved Solubility and Con-ductivity. Composites Science and Technology, 69, 639-644. [Google Scholar] [CrossRef]
|
|
[33]
|
Li, Y., Cai, Y., Shao, K., Chen, Y. and Wang, D. (2021) A Free-Standing Poly-MOF Film Fabricated by Post-Modifi- cation and Interfacial Polymerization: A Novel Platform for Cd2+ Electrochemical Sensors. Microporous and Mesoporous Materials, 323, Article ID: 111200. [Google Scholar] [CrossRef]
|
|
[34]
|
Qi, Y., Chen, X., Liu, S., Yang, P., Zhang, S., Hou, C. and Hou, D. (2021) Electrochemical Sensor for Cd2+ Detection Based on Carbon Fiber Paper Sequentially Modified with CoMOF, AuNPs, and Glutathione. Journal of the Electrochemical Society, 168, Article ID: 067526. [Google Scholar] [CrossRef]
|
|
[35]
|
Deshmukh, M.A., Shirsat, M.D., Ramanaviciene, A. and Rama-navicius, A. (2018) Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review). Critical Reviews in Analytical Chemistry, 48, 293-304. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Song, Y., Bian, C., Hu, J., Li, Y., Tong, J., Sun, J., Gao, G. and Xia, S. (2019) Porous Polypyrrole/Graphene Oxide Functionalized with Carboxyl Composite for Electrochemical Sensor of Trace Cadmium (II). Journal of the Electrochemical Society, 166, B95-B102. [Google Scholar] [CrossRef]
|
|
[37]
|
Dahaghin, Z., Kilmartin, P.A. and Mousavi, H.Z. (2018) Determination of Cadmium (II) Using a Glassy Carbon Electrode Modified with a Cd-Ion Imprinted Polymer. Journal of Electroanalyt-ical Chemistry, 810, 185-190. [Google Scholar] [CrossRef]
|
|
[38]
|
Maleki, B., Baghayeri, M., Ghanei-Motlagh, M., Mohammadi Zonoz, F., Amiri, A., Hajizadeh, F., Hosseinifar, A. and Esmaeilnezhad, E. (2019) Polyamidoamine Dendrimer Func-tionalized Iron Oxide Nanoparticles for Simultaneous Electrochemical Detection of Pb2+ and Cd2+ Ions in Environmental Waters. Measurement, 140, 81-88. [Google Scholar] [CrossRef]
|
|
[39]
|
Yu, Z., Jamal, R., Zhang, R., Zhang, W. and Abdiryim, T. (2020) Pedot-Type Conducting Polymers/Black TiO2 Composites for Electrochemical Determination of Cd2+ and Pb2+. Journal of the Electrochemical Society, 167, Article ID: 067514. [Google Scholar] [CrossRef]
|
|
[40]
|
Ghanei-Motlagh, M. and Taher, M.A. (2017) Novel Imprinted Polymeric Nanoparticles Prepared by Sol-Gel Technique for Electrochemical Detection of Toxic Cadmium (II) Ions. Chemical Engineering Journal, 327, 135-141. [Google Scholar] [CrossRef]
|
|
[41]
|
Pu, Y., Wu, Y., Yu, Z., Lu, L. and Wang, X. (2021) Simultaneous Determination of Cd2+ and Pb2+ by an Electrochemical Sensor Based on Fe3O4/Bi2O3/C3N4 Nanocomposites. Talanta Open, 3, Article ID: 100024. [Google Scholar] [CrossRef]
|
|
[42]
|
Zhang, C., Wang, C., Hao, T., Lin, H., Wang, Q., Wu, Y., Hu, Y., Wang, S., Huang, Y. and Guo, Z. (2021) Electrochemical Sensor for the Detection of ppq-Level Cd2+ Based on a Multi-functional Composite Material by Fast Scan Voltammetry. Sensors and Actuators B: Chemical, 341, Article ID: 130037. [Google Scholar] [CrossRef]
|
|
[43]
|
Wu, W., Wang, M., Zhang, Z., Zhang, W., Liu, Q., Zhang, G., Li, Z. and Wu, P. (2019) Simultaneous Voltammetric Determination of Cadmium (II), Lead (II), Mercury (II), Zinc (II), and Copper (II) Using a Glassy Carbon Electrode Modified with Magnetite (Fe3O4) Nanoparticles and Fluorinated Multi-walled Carbon Nanotubes. Mikrochimica Acta, 186, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Duan, S. and Huang, Y. (2017) Electrochemical Sensor Using NH2-MIL-88 (Fe)-rGO Composite for Trace Cd2+, Pb2+, and Cu2+ Detection. Journal of Electroanalytical Chemistry, 807, 253-260. [Google Scholar] [CrossRef]
|
|
[45]
|
Huang, W., Zhang, Y., Li, Y., Zeng, T., Wan, Q. and Yang, N. (2020) Morphology-Controlled Electrochemical Sensing of Environmental Cd2+ and Pb2+ Ions on Expanded Graphite Supported CeO2 Nanomaterials. Analytica Chimica Acta, 1126, 63-71. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Zhou, W.Y., Li ,S.S., Song, J.Y., Jiang, M., Jiang, T.J., Liu, J.Y., Liu, J.H. and Huang, X.J. (2018) High Electrochemical Sensitivity of TiO2-x Nanosheets and an Electron-Induced Mutu-al Interference Effect toward Heavy Metal Ions Demonstrated Using x-Ray Absorption Fine Structure Spectra. Analytical Chemistry, 90, 4328-4337. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Rehman, A.U., Ikram, M., Kan, K., Zhao, Y., Zhang, W.J., Zhang, J., Liu, Y., Wang, Y., Du, L. and Shi, K. (2018) 3D Interlayer Nanohybrids Composed of Reduced Gra-phenescheme Oxide/SnO2/PPy Grown from Expanded Graphite for the Detection of Ultra-Trace Cd2+, Cu2+, Hg2+ and Pb2+ Ions. Sensors and Actuators, 274, 285-295. [Google Scholar] [CrossRef]
|
|
[48]
|
Jin, Z., Yang, M., Chen, S.H., Liu, J.H., Li, Q.X. and Huang, X.J. (2017) Tin Oxide Crystals Exposed by Low-Energy {110} Facets for Enhanced Electrochemical Heavy Metal Ions Sensing: X-Ray Absorption Fine Structure Experimental Combined with Density-Functional Theory Evidence. Analytical Chemistry, 89, 2613-2621. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Hai, T.L., Hung, L.C., Phuong, T.T.B., Ha, B.T.T. and Nguyen, V.H. (2019) Multiwall Carbon Nanotube Modified by Antimony Oxide (Sb2O3/MWCNTs) Paste Electrode for the Sim-ultaneous Electrochemical Detection of Cadmium and Lead Ions. Microchemical Journal, 153, Article ID: 104456. [Google Scholar] [CrossRef]
|
|
[50]
|
Li, G., Belwal, T., Luo, Z., Li, Y. and Lin, X. (2021) Direct De-tection of Pb2+ and Cd2+ in Juice and Beverage Samples Using PDMS Modified Nanochannels Electrochemical Sensors. Food Chemistry, 356, Article ID: 129632. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Fang, Y., Cui, B., Huang, J. and Wang, L. (2019) Ultrasen-sitive Electrochemical Sensor for Simultaneous Determination of Cadmium and Lead Ions Based on One-Step Co-Electropolymerization Strategy. Sensors & Actuators B: Chemical, 284, 414-420. [Google Scholar] [CrossRef]
|
|
[52]
|
Qin, D., Mamat, A., Li, X., Hu, Y., Wang, X., Cheng, P., Dong, H., Hu, Y. and Zhi, G. (2019) Double-Shelled Yolk- Shell Si@C Microspheres Based Electrochemical Sensor for Determi-nation of Cadmium and Lead Ions. Analytica Chimica Acta, 1078, 32-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Sacara, A.M., Pitzalis, F., Salis, A., Turdean, G.L. and Muresan, L.M. (2019) Glassy Carbon Electrodes Modified with Ordered Mesoporous Silica for the Electrochemical Detection of Cadmium Ions. ACS Omega, 4, 1410-1415. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Li, L., Liu, D., Shi, A. and You, T. (2017) Simultaneous Stripping Determination of Cadmium and Lead Ions Based on the N-Doped Carbon Quantum Dots-Graphene Oxide Hybrid. Sen-sors & Actuators B: Chemical, 255, 1762-1770. [Google Scholar] [CrossRef]
|
|
[55]
|
Kava, A.A., Beardsley, C., Hofstetter, J. and Henry, C.S. (2020) Disposable Glassy Carbon Stencil Printed Electrodes for Trace Detection of Cadmium and Lead. Analytica Chimica Acta, 1103, 58-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Sukhrobov, P., Wagberg, T., Mamat, X., Qin, D., Gao, S., Wang, L., Shen, H., Yalikun, N. and Zhao, Y. (2017) Three- Dimensional Carbon Nanofiber Derived from Bacterial Cellulose for Use in a Nafion Matrix on a Glassy Carbon Electrode for Simultaneous Voltammetric Determination of Trace Levels of Cd (II) and Pb (II). Mikrochimica Acta, 184, 2759-2766. [Google Scholar] [CrossRef]
|
|
[57]
|
Gao, S., Liu, J., Mamat, X., Sambasivam, S., Li, Y., Hu, X., Wagberg, T. and Hu, G. (2018) Selective Voltammetric Determina-tion of Cd (II) by Using N, S-Codoped Porous Carbon Nanofibers. Mikrochimica Acta, 185, Article No. 282. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wu, W., Jia, M., Wang, Z., Zhang, W., Zhang, Q., Liu, G., Zhang, Z. and Li, P. (2019) Simultaneous Voltammetric Determination of Cadmium(II), Lead(II), Mercury(II), Zinc(II), and Copper(II) Using a Glassy Carbon Electrode Modified with Magnetite (Fe3O4) Nanoparticles and Fluorinated Multi-walled Carbon Nanotubes. Microchimica Acta, 186, Article No. 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Qin, D., Wang, L., Gao, S., Wang, Y., Mamat, X., Li, Y., Wag-berg, T., Cheng, H. and Hu, G. (2018) N-Doped Hollow Porous Carbon Spheres/Bismuth Hybrid Film Modified Elec-trodes for Sensitive Voltammetric Determination of Trace Cadmium. Electroanalysis, 30, 1906-1912. [Google Scholar] [CrossRef]
|
|
[60]
|
Priya, T., Dhanalakshmi, N., Thennarasu, S., Karthikeyan, V. and Thinakaran, N. (2019) Ultra Sensitive Electrochemical Detection of Cd2+ and Pb2+ Using Penetrable Nature of Gra-phene/Gold Nanoparticles/Modified L-Cysteine Nanocomposite. Chemical Physics Letters, 731, Artilce ID: 136621. [Google Scholar] [CrossRef]
|
|
[61]
|
Zhou, J., Pan, K., Qu, G., Ji, W., Ning, P., Tang, H. and Xie, R. (2022) RGO/MWCNTs-COOH 3D Hybrid Network as a High-Performance Electrochemical Sensing Platform of Screen-Printed Carbon Electrodes with an Ultra-Wide Detection Range of Cd(II) and Pb(II). Chemical Engineering Journal, 449, Article ID: 137853. [Google Scholar] [CrossRef]
|
|
[62]
|
Li, Y., Huang, H., Cui, R., Wang, D. and Sun, B. (2021) Electro-chemical Sensor Based on Graphdiyne Is Effectively Used to Determine Cd2+ and Pb2+ in Water. Sensors and Actuators B: Chemical, 332, Article ID: 129519. [Google Scholar] [CrossRef]
|
|
[63]
|
Wang, J., Yu, P., Kan, K., Lv, H., Liu, Z., Sun, B., Bai, X., Chen, J., Zhang, Y. and Shi, K. (2021) Efficient Ultra- Trace Electrochemical Detection of Cd2+, Pb2+ and Hg2+ Based on Hier-archical Porous S-Doped C3N4 Tube Bundles/Graphene Nanosheets Composite. Chemical Engineering Journal, 420, Article ID: 130317. [Google Scholar] [CrossRef]
|
|
[64]
|
Ramalingam, M., Ponnusamy, V.K. and Sangilimuthu, S.N. (2019) A Nanocomposite Consisting of Porous Graphitic Carbon Nitride Nanosheets and Oxidized Multiwalled Carbon Nano-tubes for Simultaneous Stripping Voltammetric Determination of Cadmium (II), Mercury (II), Lead (II) and Zinc (II). Microchimica Acta, 186, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Lv, X., Pei, F., Feng, S., Wu, Y. and Lei, W. (2020) Facile Syn-thesis of Protonated Carbon Nitride/Ti3C2Tx Nanocomposite for Simultaneous Detection of Pb2+ and Cd2+. Journal of the Electrochemical Society, 167, Article ID: 067509. [Google Scholar] [CrossRef]
|
|
[66]
|
Zhang, Y., Yan, X., Liu, D. and Jie, G. (2022) Versatile Electro-chemiluminescence Sensor for Dual-Potential “off” and “on” Detection of Double Targets Based on a Novel Terbium Organic Gel and Multifunctional DNA Network Probes. Sensors and Actuators B: Chemical, 362, Article ID: 131740. [Google Scholar] [CrossRef]
|
|
[67]
|
Chen, Z., Liu, C., Su, X., Zhang, W. and Zou, X. (2021) Signal on-off Ratiometric Electrochemical Sensor Based on Semi-Complementary Aptamer Couple for Sensitive Cadmium De-tection in Mussel. Sensors and Actuators B: Chemical, 346, Article ID: 130506. [Google Scholar] [CrossRef]
|
|
[68]
|
Yuan, M., Qian, S., Cao, H., Yu, J., Ye, T., Wu, X., Chen, L. and Xu, F. (2022) An Ultra-Sensitive Electrochemical Aptasensor for Simultaneous Quantitative Detection of Pb2+ and Cd2+ in Fruit and Vegetable. Food Chemistry, 382, Article ID: 132173. [Google Scholar] [CrossRef] [PubMed]
|