|
[1]
|
Riggio, A.I., Varley, K.E. and Welm, A.L. (2021) The Lingering Mysteries of Metastatic Recurrence in Breast Cancer. British Journal of Cancer, 124, 13-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Burstein, H.J., Curigliano, G. and Thür-limann, B. (2021) Customizing Local and Systemic Therapies for Women with Early Breast Cancer: The St. Gallen International Consensus Guidelines for Treatment of Early Breast Cancer 2021. Annals of Oncology, 32, 1216-1235. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Condorelli, R. and Vaz-Luis, I. (2018) Managing Side Effects in Adju-vant Endocrine Therapy for Breast Cancer. Expert Review of Anticancer Therapy, 18, 1101-1112. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Omidi, Y., Mobasher, M., Castejon, A.M. and Mahmoudi, M. (2022) Recent Advances in Nanoscale Targeted Therapy of HER2-Positive Breast Cancer. Journal of Drug Targeting, 30, 687-708. [Google Scholar] [CrossRef]
|
|
[5]
|
Malik, J.A., Ahmed, S., Jan, B., et al. (2022) Drugs Repurposed: An Advanced Step towards the Treatment of Breast Cancer and Associated Challenges. Biomedicine & Pharmacotherapy, 145, Article ID: 112375. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Perou, C.M., Sørlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S., Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A., Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S.X., Lønning, P.E., Børresen-Dale, A.L., Brown, P.O. and Botstein, D. (2000) Molecular Portraits of Human Breast Tumours. Na-ture, 406, 747-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cancer Genome Atlas Network (2012) Comprehensive Molecular Portraits of Human Breast Tumours. Nature, 490, 61-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Cheng, F., Shen, Y., Mohanasundaram, P., Lindström, M., Ivaska, J., Ny, T. and Eriksson, J.E. (2016) Vimentin Coordinates Fibroblast Proliferation and Keratinocyte Differentiation in Wound Healing via TGF-β-Slug Signaling. Proceedings of the National Academy of Sciences of the United States of America, 113, E4320-E4327. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Bronte, G., Puccetti, M., Crinò, L. and Bravaccini, S. (2019) Epitheli-al-to-Mesenchymal Transition and EGFR Status in NSCLC: The Role of Vimentin Expression. Annals of Oncology, 30, 339-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Michaels, E., Worthington, R.O. and Rusiecki, J. (2023) Breast Cancer: Risk Assessment, Screening, and Primary Prevention. Medical Clinics of North America, 107, 271-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Qu, T., Zhao, Y., Chen, Y., Jin, S., Fang, Y., Jin, X., Sun, L. and Ma, Y. (2019) Down-Regulated MAC30 Expression Inhibits Breast Cancer Cell Invasion and EMT by Suppressing Wnt/β-Catenin and PI3K/Akt Signaling Pathways. International Journal of Clinical and Experimental Pathology, 12, 1888-1896.
|
|
[12]
|
Katsura, C., Ogunmwonyi, I., Kankam, H.K. and Saha, S. (2022) Breast Cancer: Presentation, Investigation and Management. British Jour-nal of Hospital Medicine, 83, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tarighati, E., Keivan, H. and Mahani, H. (2023) A Review of Prognostic and Predictive Biomarkers in Breast Cancer. Clinical and Experimental Medicine, 23, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Su, Y., Hopfinger, N.R., Nguyen, T.D., Pogash, T.J., Santucci-Pereira, J. and Russo, J. (2018) Epigenetic Reprogramming of Epithelial Mesenchymal Transition in Triple Negative Breast Cancer Cells with DNA Methyltransferase and Histone Deacetylase Inhibitors. Journal of Experimental & Clinical Cancer Research, 37, Ar-ticle No. 314. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kalyane, D., Polaka, S., Vasdev, N. and Tekade, R.K. (2022) CD44-Receptor Targeted Gold-Doxorubicin Nanocomposite for Pulsatile Chemo-Photothermal Therapy of Triple-Negative Breast Cancer Cells. Pharmaceutics, 14, Article 2734. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Saha, K., Agasti, S.S., Kim, C., Li, X. and Rotello, V.M. (2012) Gold Nanoparticles in Chemical and Biological Sensing. Chemical Re-views, 112, 2739-2779. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Al Mannai, A., Al-Ansari, T. and Saoud, K.M. (2022) Quantification of Serum Exosome Biomarkers Using 3D Nanoporous Gold and Spectrophotometry. Sensors, 22, Article 6347. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yoo, S., Nam, D.H., Singh, T.I., Leem, G. and Lee, S. (2022) Effect of Reducing Agents on the Synthesis of Anisotropic Gold Nanoparticles. Nano Convergence, 9, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, H., Chen, Y., Chui, K.K., Zheng, J., Ma, Y., Liu, D., Huang, Z., Lei, D. and Wang, J. (2023) Synthesis of Bitten Gold Nanoparticles with Single-Particle Chiroptical Responses. Small, 19, e2301476. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Samim, M., Prashant, C., Dinda, A., Maitra, A. and Arora, I. (2022) Synthe-sis and Characterization of Gold Nanorods and Their Application for Photothermal Cell Damage [Retraction]. International Journal of Nanomedicine, 17, 5063-5064. [Google Scholar] [CrossRef]
|
|
[21]
|
Mueller, E.N., Alina, T.B., Curry, S.D., Ganguly, S., Cha, J.N. and Goodwin, A.P. (2022) Silica-Coated Gold Nanorods with Hydrophobic Modification Show Both Enhanced Two-Photon Fluorescence and Ultrasound Drug Release. Journal of Materials Chemistry B, 10, 9789-9793. [Google Scholar] [CrossRef]
|
|
[22]
|
Zhang, K. and Shen, X. (2013) Cancer Antigen 125 Detection Using the Plasmon Resonance Scattering Properties of Gold Nanorods. The Analyst, 138, 1828-1834. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Zhang, Q., Zhang, Z., Zhang, H., Wang, H., Tang, Q., Wang, Y., Gao, Q., Liu, J. and Liu, Y. (2023) Development of a Method to Diagnose Endometrial Cancer Based on the AuNRs-AntiVimentin Optical Probe. Cell Biology International, 47, 1281-1288. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of In-cidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhao, L., Du, X., Fang, B., Liu, Q., Yang, H., Li, F., Sheng, Y., Zeng, X., Zhong, H. and Zhao, W. (2022) Direct Investigations of the Electrical Conductivity of Normal and Cancer Breast Cells by Conductive Atomic Force Microscopy. Ultramicroscopy, 237, Article ID: 113531. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kalyane, D., Polaka, S., Vasdev, N. and Tekade, R.K. (2023) Cancer Cell-Specific and Laser-Activatable NanoSeeds for Targeted Photothermal Ablation of Triple-Negative Breast Cancer. Photo-chemistry and Photobiology, 99, 1157-1171. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Shao, W., Li, J., Piao, Q., Yao, X., Li, M., Wang, S., Song, Z., Sun, Y., Zheng, L., Wang, G., Liu, L., Yu, C., Huang, Y., Bao, Y. and Sun, L. (2023) FRMD3 In-hibits the Growth and Metastasis of Breast Cancer through the Ubiquitination-Mediated Degradation of Vimentin and Subse-quent Impairment of Focal Adhesion. Death & Disease, 14, Article No. 13. [Google Scholar] [CrossRef] [PubMed]
|