|
[1]
|
Ao, W., Wang, J., Mao, G., et al. (2019) Primary Hepatic Melanoma: A Case Report of Computed Tomography and Magnetic Resonance Imaging Findings. Medicine, 98, e16165. [Google Scholar] [CrossRef]
|
|
[2]
|
Chen, W., Zheng, R., Baade, P.D., et al. (2016) Cancer Sta-tistics in China, 2015. CA: A Cancer Journal for Clinicians, 66, 115-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wei, W., Zeng, H., Zheng, R., et al. (2020) Cancer Registration in China and Its Role in Cancer Prevention and Control. The Lancet Oncology, 21, E342-E349. [Google Scholar] [CrossRef]
|
|
[4]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Villanueva, A. (2019) Hepatocellular Carcinoma. The New England Jour-nal of Medicine, 380, 1450-1462. [Google Scholar] [CrossRef]
|
|
[6]
|
Barragan-Montero, A., Javaid, U., Valdes, G., et al. (2021) Artificial Intelligence and Machine Learning for Medical Imaging: A Technology Review. European Journal of Medical Physics, 83, 242-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Heidenreich, S., Schmidt, M., Bachmann, J., et al. (1996) Apopto-sis of Monocytes Cultured from Long-Term Hemodialysis Patients. Kidney International, 49, 792-799. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, Z.H., Lin, L., Wu, C.F., Li, C.F., Xu, R.H. and Sun, Y. (2021) Ar-tificial Intelligence for Assisting Cancer Diagnosis and Treatment in the Era of Precision Medicine. Cancer Communica-tions, 41, 1100-1115. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kundu, S. (2021) AI in Medicine Must Be Explainable. Nature Medicine, 27, 1328. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sultan, A.S., Elgharib, M.A., Tavares, T., Jessri, M. and Basile, J.R. (2020) The Use of Artificial Intelligence, Machine Learning and Deep Learning in Oncologic Histopathology. Jour-nal of Oral Pathology & Medicine, 49, 849-856. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, H. and Sung, J.J.Y. (2021) Potentials of AI in Medical Image Analy-sis in Gastroenterology and Hepatology. Journal of Gastroenterology and Hepatology, 36, 31-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Yousef, R., Gupta, G., Yousef, N. and Khari, M. (2022) A Holistic Over-view of Deep Learning Approach in Medical Imaging. Multimedia Systems, 28, 881-914. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bellini, V., Valente, M., Gaddi, A.V., Pelosi, P. and Bignami, E. (2022) Artificial Intelligence and Elemedicine in Anesthesia: Potential and Problems. Minerva Anestesiologica, 88, 729-734.
|
|
[14]
|
Zheng, X., Yao, Z., Huang, Y., et al. (2020) Deep Learning Radiomics Can Predict Axillary Lymph Node Status in Early-Stage Breast Cancer. Nature Communications, 11, Article No. 1236. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Melo, P.A.S., Estivallet, C.L.N., Srougi, M., et al. (2021) De-tecting and Grading Prostate Cancer in Radical Prostatectomy Specimens through Deep Learning Techniques. Clinics (Sao Paulo), 76, e3198. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, W. and Wei, C. (2020) Advances in the Early Diagnosis of Hepatocellular Carcinoma. Genes & Diseases, 7, 308-319. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Maruyama, H., Yamaguchi, T., Nagamatsu, H. and Shiina, S. (2021) AI-Based Radiological Imaging for HCC: Current Status and Future of Ultrasound. Diagnostics, 11, Article 292. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Maruyama, H., Sekimoto, T. and Yokosuka, O. (2016) Role of Contrast-Enhanced Ultrasonography with Sonazoid for Hepatocellular Carcinoma: Evidence from a 10-Year Experience. Journal of Gastroenterology, 51, 421-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lee, J.Y., Minami, Y., Choi, B.I., et al. (2020) The AFSUMB Consensus Statements and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound Using Sonazoid. Ultrasonography, 39, 191-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yang, Q., Wei, J., Hao, X., et al. (2020) Improving B-Mode Ultrasound Diagnostic Performance for Focal Liver Lesions Using Deep Learning: A Multicentre Study. EBioMedicine, 56, Article ID: 102777. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Mitrea, D.A., Brehar, R., Nedevschi, S., et al. (2023) Hepato-cellular Carcinoma Recognition from Ultrasound Images Using Combinations of Conventional and Deep Learning Tech-niques. Sensors, 23, Article 2520. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yagasaki, S., Koizumi, N., Nishiyama, Y., et al. (2020) Estimating 3-Dimensional Liver Motion Using Deep Learning and 2-Dimensional Ultrasound Images. International Journal of Computer Assisted Radiology and Surgery, 15, 1989-1995. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yoon, Y.H., Khan, S., Huh, J. and Ye, J.C. (2019) Efficient B-Mode Ultrasound Image Reconstruction from Sub-Sampled RF Data Using Deep Learning. IEEE Transactions on Medical Imaging, 38, 325-336. [Google Scholar] [CrossRef]
|
|
[24]
|
Yi, J., Kang, H.K., Kwon, J.H., et al. (2021) Technology Trends and Applications of Deep Learning in Ultrasonography: Image Quality Enhancement, Diagnostic Support, and Improving Workflow Efficiency. Ultrasonography, 40, 7-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhang, H., Luo, K., Deng, R., et al. (2022) Deep Learning-Based CT Imaging for the Diagnosis of Liver Tumor. Computational Intelligence and Neuroscience, 2022, Article ID: 3045370. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Guo, Z., Blake, G.M., Li, K., et al. (2020) Liver Fat Content Measurement with Quantitative CT Validated against MRI Proton Density Fat Fraction: A Prospective Study of 400 Healthy Volunteers. Radiology, 294, 89-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hu, M.D., Zhong, Y., Xie, S.X., Lv, H.B. and Lv, Z.H. (2021) Fuzzy System Based Medical Image Processing for Brain Disease Prediction. Frontiers in Neuroscience, 15, Article 714318. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kim, D.W., Lee, G., Kim, S.Y., et al. (2021) Deep Learn-ing-Based Algorithm to Detect Primary Hepatic Malignancy in Multiphase CT of Patients at High Risk for HCC. Euro-pean Radiology, 31, 7047-7057. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Gao, R., Zhao, S., Aishanjiang, K., et al. (2021) Deep Learning for Differential Diagnosis of Malignant Hepatic Tumors Based on Multi-Phase Contrast-Enhanced CT and Clinical Data. Journal of Hematology & Oncology, 14, Article No. 154. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kim, K., Kim, S., Han, K., et al. (2021) Diagnostic Performance of Deep Learning-Based Lesion Detection Algorithm in CT for Detecting Hepatic Metastasis from Colorectal Cancer. Korean Journal of Radiology, 22, 912-921.
|
|
[31]
|
Kavur, A.E., Gezer, N.S., Baris, M., et al. (2021) CHAOS Challenge—Combined (CT-MR) Healthy Abdominal Organ Segmentation. Medical Image Analysis, 69, Article ID: 101950. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Feng, B., Ma, X.H., Wang, S., et al. (2021) Application of Artificial Intelligence in Preoperative Imaging of Hepatocellular Carcinoma: Current Status and Future Perspectives. World Journal of Gastroenterology, 27, 5341-5350. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zhen, S.H., Cheng, M., Tao, Y.B., et al. (2020) Deep Learning for Accurate Diagnosis of Liver Tumor Based on Magnetic Resonance Imaging and Clinical Data. Frontiers in Oncology, 10, Article 680. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Zhong, X., Guan, T., Tang, D., et al. (2021) Differentiation of Small (≤ 3 cm) Hepatocellular Carcinomas from Benign Nodules in Cirrhotic Liver: The Added Additive Value of MRI-Based Radiomics Analysis to LI-RADS Version 2018 Algorithm. BMC Gastroenterology, 21, Article No. 155. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Preis, O., Blake, M.A. and Scott, J.A. (2011) Neural Network Evaluation of PET Scans of the Liver: A Potentially Useful Adjunct in Clinical Interpretation. Radiology, 258, 714-721. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Taylor-Weiner, A., Pokkalla, H., Han, L., et al. (2021) A Machine Learning Approach Enables Quantitative Measurement of Liver Histology and Disease Monitoring in NASH. Hepatolo-gy, 74, 133-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cheng, N., Ren, Y., Zhou, J., et al. (2022) Deep Learning-Based Classifi-cation of Hepatocellular Nodular Lesions on Whole-Slide Histopathologic Images. Gastroenterology, 162, 1948-61.E7. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, M., Zhang, B., Topatana, W., et al. (2020) Classification and Mutation Prediction Based on Histopathology H&E Images in Liver Cancer Using Deep Learning. NPJ Precision Oncology, 4, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ahn, J.C, Qureshi, T.A., Singal, A.G., Li, D.B. and Yang, J.D. (2021) Deep Learning in Hepatocellular Carcinoma: Current Status and Future Perspectives. World Journal of Gastroen-terology, 13, 2039-2051. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Llovet, J.M., Kelley, R.K., Villanueva, A., et al. (2021) Hepatocel-lular Carcinoma. Nature Reviews Disease Primers, 7, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
European Association for the Study of the Liver (2018) Easl Clinical Practice Guidelines: Management of hepatocellular Carcinoma. Journal of Hepatology, 69, 182-236.
|
|
[42]
|
Liu, F., Liu, D., Wang, K., et al. (2020) Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Cu-rative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients. Liver Cancer, 9, 397-413. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhang, L., Jiang, Y., Jin, Z., et al. (2022) Real-Time Automatic Prediction of Treatment Response to Transcatheter Arterial Chemoembolization in Patients with Hepatocellular Carcinoma Using Deep Learning Based on Digital Subtraction Angiography Videos. Cancer Imaging, 22, Article No. 23. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Peng, J., Huang, J., Huang, G. and Zhang, J. (2021) Predicting the Initial Treatment Response to Transarterial Chemoembolization in Intermediate-Stage Hepatocellular Carcinoma by the Integration of Radiomics and Deep Learning. Frontiers in Oncology, 11, Article 730282. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
He, T., Fong, J.N., Moore, L.W., et al. (2021) An Imageomics and Multi-Network Based Deep Learning Model for Risk Assessment of Liver Transplantation for Hepatocellular Cancer. Computerized Medical Imaging and Graphics, 89, Article ID: 101894. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Sun, L., Marsh, J.N., Matlock, M.K., et al. (2020) Deep Learning Quantification of Percent Steatosis in Donor Liver Biopsy Frozen Sections. EBioMedicine, 60, Article ID: 103029. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Saillard, C., Schmauch, B., Laifa, O., et al. (2020) Pre-dicting Survival after Hepatocellular Carcinoma Resection Using Deep Learning on Histological Slides. Hepatology, 72, 2000-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chaudhary, K., Poirion, O.B., Lu, L.G. and Garmire, L.X. (2018) Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer. Clinical Cancer Re-search, 24, 1248-1259. [Google Scholar] [CrossRef]
|
|
[49]
|
Owens, A.R., Mcinerney, C.E., Prise, K.M., McArt, D.G. and Jurek-Loughrey, A. (2021) Novel Deep Learning-Based Solution for Identification of Prognostic Subgroups in Liver Cancer (Hepatocellular Carcinoma). BMC Bioinformatics, 22, Article No. 563. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Shi, J.Y., Wang, X., Ding, G.Y., et al. (2021) Exploring Prog-nostic Indicators in the Pathological Images of Hepatocellular Carcinoma Based on Deep Learning. Gut, 70, 951-961. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Liu, Z., Liu, Y., Zhang, W., et al. (2022) Deep Learning for Pre-diction of Hepatocellular Carcinoma Recurrence after Resection or Liver Transplantation: A Discovery and Validation Study. Hepatology International, 16, 577-589. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Martins-Filho, S.N., Paiva, C., Azevedo, R.S. and Ferreira Alves, V.A. (2017) Histological Grading of Hepatocellular Carcinoma—A Systematic Review of Literature. Frontiers in Medi-cine, 4, Article 193. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Sasaki, A., Kai, S., Iwashita, Y., et al. (2005) Microsatellite Distri-bution and Indication for Locoregional Therapy in Small Hepatocellular Carcinoma. Cancer, 103, 299-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Mao, B., Zhang, L., Ning, P., et al. (2020) Preoperative Prediction for Pathological Grade of Hepatocellular Carcinoma via Machine Learning-Based Radiomics. European Radiology, 30, 6924-6932. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Nagai, S., Nallabasannagari, A.R., Moonka, D., et al. (2022) Use of Neural Network Models to Predict Liver Transplantation Waitlist Mortality. Liver Transplantation, 28, 1133-1143. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Chai, H., Xia, L., Zhang, L., et al. (2021) An Adaptive Trans-fer-Learning-Based Deep Cox Neural Network for Hepatocellular Carcinoma Prognosis Prediction. Frontiers in Oncol-ogy, 11, Article ID: 692774. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Lai, Q., Spoletini, G., Mennini, G., et al. (2020) Prognostic Role of Artificial Intelligence among Patients with Hepatocellular Cancer: A Systematic Review. World Journal of Gastroenter-ology, 26, 6679-6688. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Zhuang, H.M., Zhang, J.X. and Liao, F. (2023) A Systematic Re-view on Application of Deep Learning in Digestive System Image Processing. The Visual Computer, 39, 2207-2222.
|
|
[59]
|
Akkus, Z., Cai, J., Boonrod, A., et al. (2019) A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow. Journal of the American College of Radi-ology, 16, 1318-1328. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Khairat, S., Coleman, G.C., Russomagno, S. and Gotz, D. (2018) Assessing the Status Quo of EHR Accessibility, Usability, and Knowledge Dissemination. eGEMs, 6, Article 9. [Google Scholar] [CrossRef] [PubMed]
|