|
[1]
|
Lee, N.K., Sowa, H., Hinoi, E., et al. (2007) Endocrine Regulation of Energy Metabolism by the Skeleton. Cell, 130, 456-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Khosla, S. (2023) Evidence in Humans for Bone as an Endocrine Organ Regulating Energy Metabolism. Current Opinion in Endocrine and Metabolic Research, 31, Article ID: 100471. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Florencio-Silva, R., da Silva Sasso, G.R., Sasso-Cerri, E., Simões, M.J. and Cerri, P.S. (2015) Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International, 2015, Article ID: 421746. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Oldknow, K.J., Macrae, V.E. and Farquharson, C. (2015) Endocrine Role of Bone: Recent and Emerging Perspectives beyond Osteocalcin. Journal of Endocrinology, 225, R1-R19. [Google Scholar] [CrossRef]
|
|
[5]
|
Arias, C.F., Herrero, M.A., Echeverri, L.F., Oleaga, G.E. and López, J.M. (2018) Bone Remodeling: A Tissue-Level Process Emerging from Cell-Level Molecular Algorithms. PLOS ONE, 13, e0204171. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Ferron, M. and Lacombe, J. (2014) Regulation of Energy Me-tabolism by the Skeleton: Osteocalcin and beyond. Archives of Biochemistry and Biophysics, 561, 137-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Fernandes, T.A.P., Gonçalves, L.M.L. and Brito, J.A.A. (2017) Relationships between Bone Turnover and Energy Metabolism. Journal of Diabetes Research, 2017, Article ID: 9021314. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Confavreux, C.B. (2011) Bone: From a Reservoir of Miner-als to a Regulator of Energy Metabolism. Kidney International, 79, S14-S19. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lin, X., Brennan-Speranza, T.C., Levinger, I. and Yeap, B.B. (2018) Un-dercarboxylated Osteocalcin: Experimental and Human Evidence for a Role in Glucose Homeostasis and Muscle Regula-tion of Insulin Sensitivity. Nutrients, 10, Article No. 847. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hauschka, P.V., Lian, J.B., Cole, D.E. and Gundberg, C.M. (1989) Osteocalcin and Matrix Gla Protein: Vitamin K-Dependent Pro-teins in Bone. Physiological Reviews, 69, 990-1047. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ferron, M., Hinoi, E., Karsenty, G. and Ducy, P. (2008) Osteocalcin Differentially Regulates Beta Cell and Adipocyte Gene Ex-pression and Affects the Development of Metabolic Diseases in Wild-Type Mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 5266-5270. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ng, K.W. and Martin, T.J. (2009) New Functions for Old Hormones: Bone as an Endocrine Organ. Molecular and Cellular Endocrinology, 310, 1-2. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L. and Karsenty, G. (1997) Osf2/Cbfa1: A Transcriptional Activator of Osteoblast Differentiation. Cell, 89, 747-754. [Google Scholar] [CrossRef]
|
|
[14]
|
Ducy, P., Desbois, C., Boyce, B., et al. (1996) Increased Bone Formation in Osteocalcin-Deficient Mice. Nature, 382, 448-452. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mizokami, A., Kawakubo-Yasukochi, T. and Hirata, M. (2017) Osteocalcin and Its Endocrine Functions. Biochemical Pharmacology, 132, 1-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kanazawa, I. (2015) Osteocalcin as a Hormone Regulating Glucose Metabolism. World Journal of Diabetes, 6, 1345-1354. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Bilotta, F.L., Arcidiacono, B., Messineo, S., et al. (2018) Insulin and Osteocalcin: Further Evidence for a Mutual Cross-Talk. Endo-crine, 59, 622-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Rosen, C.J. and Motyl, K.J. (2010) No Bones about It: Insulin Modulates Skeletal Remodeling. Cell, 142, 198-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Otani, T., Mizokami, A., Kawakubo-Yasukochi, T., et al. (2020) The Roles of Osteocalcin in Lipid Metabolism in Adipose Tissue and Liver. Advances in Biological Regulation, 78, Arti-cle ID: 100752. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wei, J., Ferron, M., Clarke, C.J., et al. (2014) Bone-Specific Insu-lin Resistance Disrupts Whole-Body Glucose Homeostasis via Decreased Osteocalcin Activation. Journal of Clinical In-vestigation, 124, 1-13. [Google Scholar] [CrossRef]
|
|
[21]
|
Pandey, A., Khan, H.R., Alex, N.S., et al. (2020) Under-Carboxylated Os-teocalcin Regulates Glucose and Lipid Metabolism during Pregnancy and Lactation in Rats. Journal of Endocrinological Investigation, 43, 1081-1095. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yamauchi, T., Kamon, J., Waki, H., et al. (2001) The Fat-Derived Hormone Adiponectin Reverses Insulin Resistance Associated with Both Lipoatrophy and Obesity. Nature Medicine, 7, 941-946. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yamauchi, T., Kamon, J., Ito, Y., et al. (2003) Cloning of Adiponectin Receptors That Mediate Antidiabetic Metabolic Effects. Nature, 423, 762-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Tsuchida, A., Yamauchi, T., Ito, Y., et al. (2004) Insulin/Foxo1 Pathway Regulates Expression Levels of Adiponectin Receptors and Adiponectin Sensitivity. Journal of Biological Chemistry, 279, 30817-30822. [Google Scholar] [CrossRef]
|
|
[25]
|
Yamauchi, T., Nio, Y., Maki, T., et al. (2007) Targeted Disruption of AdipoR1 and AdipoR2 Causes Abrogation of Adiponectin Binding and Metabolic Actions. Nature Medicine, 13, 332-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Otani, T., Mizokami, A., Hayashi, Y., et al. (2015) Signaling Path-way for Adiponectin Expression in Adipocytes by Osteocalcin. Cellular Signalling, 27, 532-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
de Paula, F.J. and Rosen, C.J. (2013) Bone Remodeling and En-ergy Metabolism: New Perspectives. Bone Research, 1, 72-84. [Google Scholar] [CrossRef]
|
|
[28]
|
Funakoshi, S., Yoshimura, K., Hirano, S., et al. (2020) Undercarbox-ylated Osteocalcin Correlates with Insulin Secretion in Japanese Individuals with Diabetes. Diabetology & Metabolic Syndrome, 12, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Garanty-Bogacka, B., Syrenicz, M., Rać, M., et al. (2013) Asso-ciation between Serum Osteocalcin, Adiposity and Metabolic Risk in Obese Children and Adolescents. Endokrynologia Polska, 64, 346-352. [Google Scholar] [CrossRef]
|
|
[30]
|
Rodríguez-Narciso, S., Martínez-Portilla, R.J., Guzmán-Guzmán, I.P., et al. (2022) Osteocalcin Serum Concentrations and Markers of Energetic Metabolism in Pediatric Patients. Systematic Review and Metanalysis. Frontiers in Pediatrics, 10, Article 1075738. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zheng, W.-B., Hu, J., Zhao, D.-C., et al. (2022) The Role of Os-teocalcin in Regulation of Glycolipid Metabolism and Muscle Function in Children with Osteogenesis Imperfecta. Fron-tiers in Endocrinology, 13, Article 898645. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Ugurlu, I., Akalin, A. and Yorulmaz, G. (2022) The Association of Serum Osteocalcin Levels with Metabolic Parameters and Inflammation in Postmenopausal Women with Metabolic Syndrome. Metabolic Syndrome and Related Disorders, 20, 219-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Lei, H., Liu, J., Wang, W., et al. (2022) Association between Osteocal-cin, a Pivotal Marker of Bone Metabolism, and Secretory Function of Islet Beta Cells and Alpha Cells in Chinese Patients with Type 2 Diabetes Mellitus: An Observational Study. Diabetology & Metabolic Syndrome, 14, Article No. 160. [Google Scholar] [CrossRef] [PubMed]
|