相干光断层扫描影像学特征在视网膜静脉阻塞中的研究进展
Research Progress of Imaging Features of Optical Coherence Tomography in Retinal Vein Occlusion
摘要: 视网膜血管疾病的第二大常见原因是视网膜血管阻塞(RVO),RVO增加了毛细血管和静脉的血管内压力,引发血管屏障塌陷,随后的血液或血浆成分渗漏到组织中引起的黄斑水肿(ME)可导致严重的视力损害。光学相干断层扫描成像(OCT)能对视网膜结构进行微结构和邻近组织成像,极大地改变了视网膜疾病的治疗方法。它允许定量和定性分析成像生物标志物,是RVO常见的检查方法。通过光谱域OCT (SD-OCT)评估的其他生物标志物有:视网膜内液(IRF)和视网膜下液(SRF)的存在和位置、内层视网膜结构紊乱(DRIL)的存在、超反射焦点(HRF)的存在(数量和位置);中心凹下视网膜厚度(CRT)、椭球带(EZ)的改变和外界膜(ELM)特征、突出中界膜(p-MLM)征和中央旁急性中间黄斑病变(PAMM)等,有证据表明OCT生物标志物可能有助于预测治疗的临床结果。通过对上述影像学生物标志物的研究,会进一步认识视网膜血管疾病,对帮助解决RVO患者的治疗预期是非常有用和重要的。
Abstract: Retinal vascular occlusion (RVO) is the second most common cause of retinal vascular disease, RVO increased capillary and venous pressure within the blood vessels, cause the failure of vascular bar-rier, then blood or plasma composition macular edema (ME) caused by leakage into tissue can lead to severe visual impairment. Optical coherence tomography (OCT) imaging to microstructure and neighboring retinal structure group woven like, greatly changed the treatment of diseases of the retina. It allows the quantitative and qualitative analysis of imaging biomarkers, is RVO common inspection method. By spectral domain OCT (SD-OCT) evaluation of other biomarkers are: The intra retinal fluid (IRF) and subretinal fluid (SRF) of existence and the existence of the position, the ex-istence of the disorganization of the inner retinal layers (DRIL), hyperreflective foci (HRF) (the number and location); Under the central retinal thickness (CRT), ellipsoid zone (EZ) and changes of the external limiting membrane (ELM) characteristics, prominent middle limiting membrane (p-MLM) and the central near among paracentral acute middle maculopathy (PAMM) and so on, there is evidence that OCT biomarkers could help predict the clinical outcome of treatment. Through the study of the imaging biomarkers, will further understanding of retinal vascular disease, to help solve the treatment of patients with RVO expectations are very useful and important.
文章引用:朱贞燕, 余萍. 相干光断层扫描影像学特征在视网膜静脉阻塞中的研究进展[J]. 临床医学进展, 2023, 13(9): 14183-14190. https://doi.org/10.12677/ACM.2023.1391983

1. 前言

视网膜静脉阻塞(retinal vein occlusion, RVO)是第二常见的损伤视力的视网膜血管疾病,约0.5%的患者发病年龄在31岁至101岁之间,RVO是在静脉血管内形成血栓,导致血液从视网膜流出紊乱 [1] 。RVO根据阻塞的解剖位置,可大致分为分支型RVO (branch retinal vein occlusion, BRVO)和中央型RVO (central retinal vein occlusion, CRVO),BRVO和CRVO的常见并发症包括黄斑水肿、黄斑缺血,这些并发症是持续性的且难以治疗。BRVO比CRVO更常见,预后更好 [1] [2] 。2010年Rogers S和同事首次估计了全球RVO的患病率(2010年全球RVO研究),据统计,30岁及以上人群中患RVO的患者约有1640万人,其中1390万人患有BRVO,250万人患有CRVO [3] 。2015年,全球30~89岁人群中RVO、BRVO和CRVO的患病率分别为0.77%、0.64%和0.13%,相当于总患病人口有2806万,其中BRVO患病人口有2338万和CRVO患病人口有2338万,从以上数据可见RVO对全球人口影响极大。2019年,Song P等通过对RVO发病率、患病率及危险因素的mate分析发现,高血压是引起RVO发病的最强独立危险因素,高龄、高胆固醇是引起RVO发病的重要危险因素 [4] 。随着全球人口老龄化的趋势和心血管疾病的负担不断增加,预计未来,RVO可能会给社会带来巨大的负担,所以对RVO患者及时正确的诊断,对减轻社会经济负担和RVO疾病的治疗非常重要 [3] [4] 。

光学相干断层扫描成像(optical coherence tomography, OCT)是诊断和评价RVO的常用的检查方法,其通过断层扫描成像为患者及医生提供视网膜的深入横断面信息,因此广泛应用于RVO诊断和评估 [5] 。随着光学成像技术的不断精进,OCT提供了一种更好、更准确的检测技术,尤其是谱域OCT (spectral-OCT)的出现使视网膜层图像能以更高的速度和分辨率获取,从而更容易识别视网膜内细微层之间的边界以及各种视网膜病变相关的视网膜微结构变化的细节,以客观和标准化的方式 [6] [7] 评估所有个体视网膜层的病变,包括位置、扩展、模式和其他特征。本综述的主要目的是通过目前国内外研究者对OCT下RVO患者预后的预测相关指标的研究进行综述,进一步探讨OCT在RVO患者治疗中的意义。

2. 中央视网膜厚度(CRT)

中央视网膜厚度(central retinal thickness, CRT)为黄斑中心厚度,是指测量黄斑中心1 mm区域其内外边界之间视网膜的平均厚度,是诊断视网膜血管疾病最常用的指标之一 [8] 。ME是RVO视力恶化的主要原因,其特征是视网膜黄斑区液体聚集 [9] [10] 。病理机制是由于血–视网膜屏障(BRB)遭到损害,可引起细胞内和细胞外水肿,造成黄斑水肿 [10] 。CRT是OCT检查下反映黄斑水肿程度的一个重要指标 [11] ,黄斑区液体增加可致CRT变厚 [12] 。CRT可反映RVO合并ME的程度,CRT越厚表示ME程度越重,RVO患者经治疗CRT降低后视力也会相应得到改善,原因可能是CRT增厚对光感受器细胞及ELM完整性的破坏在一定范围和程度内可逆。有部分学者认为CRT可判断RVO的治疗效果,但与视力预后无明显相关 [13] 。有研究指出,视网膜内囊肿(intraretinal cysts, IRC)的高度与抗VEGF药物治疗过程中黄斑功能和解剖的改善相关,比中央视网膜厚度更有预测价值。当视网膜内囊肿(IRC)的水平直径 ≥ 600 μm,可视为黄斑囊样变性,与黄斑囊样水肿(CME)不同,黄斑囊样变性是一种严重的慢性ME,提示视敏度更差,CRT更厚 [14] 。Reznicek等 [15] 也得出相似结论,同时提出IRC的位置和大小与抗VEGF药物的疗效相关。CRT是一个强有力的变量,因为RVO是一种急性发作的疾病,并且可能不会像慢性视网膜疾病那样显示出许多长期变化。光感受器状态在疾病急性发作时对视力没有直接影响,但对治疗后视力预后起重要作用。

3. 视网膜内液(IRF)、视网膜下液(SRF)

视网膜内液(intra retinal fluid, IRF)、视网膜下液(subretinal fluid, SRF)是RVO-ME存在的形态指征 [16] 。有研究将IRF、SRF的持续存在作为治疗效果不佳的指标 [17] 。RVO引起的视网膜缺血、缺氧,损害视网膜色素上皮细胞(RPE)并改变其链接复合物,致使视网膜外屏障(oBRB)损伤,造成液体异常积聚,形成SRF、IRF [13] 。IRF是位于神经纤维层的无反射区域,SRF是介于视网膜神经纤维层与RPE之间的圆形或椭圆形的无反射区域,其存在与CRT密切相关 [4] 。IRF是最为常见的积液类型 [18] ,与普遍认为导致视力预后更差来的IRF不同,SRF是否需要彻底消除存在争议。HARBOR等研究发现,在12 mo和24 mo,有SRF残余的患眼视力提升更多 [19] 。CATT等研究发现,在抗VEGF治疗期间,持续的SRF不会对视力结果产生不利影响 [20] 。并且两项研究均发现SRF是预防黄斑萎缩的保护因子 [19] [20] 。EXCITE等研究分析发现,反复复发的SRF可能导致视力预后更差 [21] 。FLUID等的最新研究提出残存的SRF会随着时间的延长而进一步增加,且与视力下降显著相关 [22] 。

4. 外界膜(ELM)、椭圆体带(EZ)的完整性

外界膜(external limiting membrane, ELM)将视杆细胞层和视锥细胞层与上覆的外核层分开,并且是Muller细胞和光感受器之间的连接复合物的线性汇合 [23] [24] 。它作为对大分子的屏障 [25] 。光感受器的亚细胞区室包括吸收光并将其转化为电信号的外段和具有产生能量和蛋白质的代谢功能的内段。ELM和EZ的完整性对于维持视力至关重要。ELM及EZ的完整性可作为判断RVO-ME患者预后视力的重要指标 [23] ,初诊视力也是RVO-ME患者水肿消退后预后视力的影响因素。EZ对应光感受器内节,视锥细胞线粒体富集位置,具有能量代谢的作用。这使得光感受器的能量消耗水平更高。ELM和EZ的形态正常代表光感受器完整 [24] ,其形态的完整对维持正常视力非常必要。光感受细胞容易受缺血缺氧及炎症作用的影响而凋亡,SD-OCT上EZ的局灶性或全局缺失对应于EZ的反射率降低或解剖学缺失。中央凹光感受器中线粒体的功能障碍导致DME中VA降低 [25] 。所以在RVO-ME患者OCT下可见ELM或EZ的断裂或消失。当发生RVO时,Müller细胞和神经胶质细胞变性失活可导致外界膜层破坏。Gerendas等 [26] 认为,外丛状层的囊样变化可能造成光感受器细胞和椭圆体带(EZ)连续性的破坏并对中枢视觉产生不可逆的影响。

5. 内层视网膜结构紊乱(DRIL)

内层视网膜结构紊乱(Disorganization of the inner retinal layers, DRIL)是指黄斑中心凹1 mm区域内的内层视网膜(即神经节细胞–内丛状层复合体、内核层和外丛状层)层次结构紊乱,导致OCT上任意两者之间的界线无法辨别 [27] [28] 。DIRL为近年来新发现的一种OCT影像学标志物,它并不是DME所特有的,而在多种视网膜疾病所致的视网膜应激状态中均可见。Sun等 [29] 提出,DRIL可能反映了双极轴突从黄斑水肿中提取时断裂的现象。当位于内层的细胞被破坏时,信号转导能力下降,导致视觉功能下降。RVO可发生在视网膜的中央静脉或其中一个分支,随着血管通透性增加,继发性视网膜内液通常积聚在外丛状层,视网膜下液通常积聚在视网膜下,并且可导致椭圆体带结构紊乱。先前研究指出,DRIL与糖尿病性黄斑水肿的视力显著相关。DRIL是视网膜循环不良的信号 [30] ,DR研究发现DRIL的存在代表黄斑部毛细血管发生无灌注,但不是所有的无灌注都会发生DRIL [31] 。根据《我国糖尿病视网膜病变临床诊疗指南(2022年)》所述,DRIL在检测黄斑缺血的灵敏度和特异性分别可达84.4%和100.0%,其出现与DME患者视力预后差相关,DRIL是DME黄斑缺血状态评估及判断视力预后的关键标志物。综上所述,DRIL的存在与视力较差相关。

6. 超反射焦点(HRF)

超反射焦点(hyperreflective foci, HRF)在2009年由Bolz等人首次描述定义 [31] ,Matthias等人观察到的HRF位于视网膜微动脉瘤的血管壁周围,并散布于视网膜各层结构。HRF为在频域OCT中小于30 μm且分散在视网膜各层的边界清楚的圆形或椭圆形高反射颗粒,其反射率等于或高于RPE层 [32] ,但在眼底照相或检眼镜检查中却无法看到。随着OCT设备的不断优化以及眼科学者对视网膜高反射点研究的深入,关于视网膜高反射点的认识也在持续深入。不少组织学研究发现 [33] ,向前迁移的视网膜色素上皮细胞在OCT上显示为高反射点。另外,Pang教授等人的研究指出 [34] ,AMD眼OCT扫描上的高反射点可能同时包含了色素上皮细胞以及富含脂质的小胶质细胞,即视网膜高反射点至少有2种细胞来源。先前的研究发现视网膜外层HRF是RVO-ME患者经抗VEGF治疗结果的最佳预测因素 [35] 。并认为,HRF可能是小管腔内蛋白或脂质沉积;现多认为,HRF是小胶质细胞被激活的炎症反应,可能是神经退行性过程 [36] 。视网膜包含3种胶质细胞,星形胶质细胞、小胶质细胞位于视网膜内层,Müller细胞则围绕在视网膜血管周围、贯穿视网膜全层。RVO发生后,视网膜缺血缺氧,改变及损伤了微环境,继而视网膜胶质细胞被激活,大量的细胞因子产生,促进了炎症反应 [37] [38] 。目前关于视网膜高反射点的来源仍没有达成共识,HRF已被视为多种视网膜疾病的生物标志物,但其对于疾病预后的影响,不同研究报道的结果不同,相反,不少研究发现高反射点与较差的视力预后相关 [39] [40] [41] [42] 。

7. 突出中界膜(p-MLM)征和中央旁急性中间黄斑病变(PAMM)

突出中界膜的存在征(prominent middle limiting membrane (p-MLM) sign)和中央旁急性中间黄斑病变(paracentral acute middle maculopathy, PAMM)是视网膜缺血的特征。“突出的中间限制膜征”(p-MLM征)的概念在2013年由Chu等人提出 [43] ,其在光谱域光学相干断层扫描(SD-OCT) B扫描图像上表现为外丛状层(OPL)的内突触部分处的超反射肿胀线,作为视网膜动脉阻塞(RAO)中急性缺血性视网膜损伤的指标和区分缺血性与非缺血性视网膜静脉阻塞(RVO)的诊断工具。其中央旁急性中间黄斑病变(PAMM),在2013年,由Sarraf等人首次定义。其特征在于存在跨越内核层(inner nuclear layer, INL)的超反射带,随后永久性INL变薄 [44] 。由大量的报道报道证实PAMM不是一个独特的实体,而是几种眼部疾病、眼部手术甚至全身性疾病 [45] 的共同体征。虽然其病理生理学尚未完全了解,但已证明通过视网膜毛细血管系统的灌注受损,导致深部血管复合体(DVC)的灌注不足或缺血,在其中起主要作用 [46] 。与PAMM相关的机制主要是由于中间视网膜组织(主要是INL层)的亚致死性缺血缺氧 [47] 。PAMM目前已经作为一种标志物用来预测RVO视网膜缺血区域的发展,p-MLM在临床和科研方面的运用也越来越多间接反映视网膜MCP及DCP的缺血可预测视网膜缺血性疾病的发生发展。

8. 小结

OCT能够清晰地显示视网膜的细微结构,评估RVO的形态学变化,其可用于RVO-ME的诊断、分期和观察。综上所述,CRT与视觉功能呈负相关;IRF、SRF是通常提示有急性黄斑水肿;完整的EM、ELM、VA预后更好;DRIL提示内外光感受连线的完整性变化,基线时较高的DRIL范围与较差的视力结局相关。HF数量越多,光感受器层破裂的可能性就越大,视力越有恶化的可能,发现PAMM、p-MLM的信号可以预测RVO眼缺血区的发展。通过OCT检查对视网膜厚度和微结构的细微变化的观察,可为RVO患者诊断及治疗提供进一步指导,并可预测视力的远期预后。综上所述,RVO-ME是一种临床常见的视网膜血管疾病,OCT检查可直观反映视网膜的提供视网膜的深入横断面信息,对RVO-ME病程变化的敏感性高,为诊断和随访RVO-ME严重程度、调整治疗方案、监测治疗效果及判断疾病预后提供了重要的指导作用。

参考文献

[1] Ponto, K.A., Elbaz, H., Peto, T., Laubert-Reh, D., Binder, H., Wild, P.S., et al. (2015) Prevalence and Risk Factors of Retinal Vein Occlusion: The Gutenberg Health Study. Journal of Thrombosis and Haemostasis, 13, 1254-1263.
https://doi.org/10.1111/jth.12982
[2] Spaide, R.F., Fujimoto, J.G. and Waheed, N.K. (2015) Optica Lcoherence Tomography Angiography. Retina, 35, 2161-2162.
https://doi.org/10.1097/IAE.0000000000000881
[3] Rogers, S., McIntosh, R.L., Cheung, N., Lim, L., Wang, J.J., Mitchell, P., et al. (2010) The Prevalence of Retinal Vein Occlusion: Pooled data from Population Studies from the United States, Europe, Asia, and Australia. Ophthalmology, 117, 313-9.E1.
[4] Song, P., Xu, Y., Zha, M., Zhang, Y. and Rudan, I. (2019) Global Epidemiology of Retinal Vein Occlusion: A Systematic Review and Meta-Analysis of Prevalence, Incidence, and Risk Factors. Journal of Global Health, 9, Article ID: 010427.
https://doi.org/10.7189/jogh.09.010427
[5] 孙梅, 郝晓凤, 谢立科, 等. 视网膜静脉阻塞继发黄斑水肿的OCT影像指标研究进展[J]. 国际眼科杂志, 2023, 23(1): 58-61.
[6] Chung, H., Park, B., Shin, H.J. and Kim, H.C. (2012) Correlation of Fundus Autofluorescence with Spectral-Domain Optical Coherence Tomography and Vision in Diabetic Macular Edema. Ophthalmology, 119, 1056-1065.
https://doi.org/10.1016/j.ophtha.2011.11.018
[7] Domalpally, A., Blodi, B.A., Scott, I.U., et al. (2009) The Standard Care Vscorticos Teroid for Retinal Veinocclusion (SCORE) Study System for Evaluation of Optical Coherence Tomograms: SCORE Study Report 4. Arch Ophthalmology, 127, 1461-1467.
https://doi.org/10.1001/archophthalmol.2009.277
[8] Hayreh, S.S. (2014) Ocular Vascular Occlusive Disorders: Natural History of Visual Outcome. Progress in Retinal and Eye Research, 41, 1-25.
https://doi.org/10.1016/j.preteyeres.2014.04.001
[9] Daruich, A., Matet, A., Moulin, A., et al. (2018) Mechanisms of Macular Edema: Beyond the Surface. Progress in Retinal and Eye Research, 63, 20-68.
https://doi.org/10.1016/j.preteyeres.2017.10.006
[10] Del Aem, E.M., Rimpel, A., Heikkinen, E., et al. (2017) Pharmacokinetic Aspects of Retinal Drug Delivery. Progress in Retinal and Eye Research, 57, 134-185.
https://doi.org/10.1016/j.preteyeres.2016.12.001
[11] Schmidt-Erfurth, U., Garcia-Arumi, J., Gerendas, B.S., et al. (2019) Guide-lines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologica, 242, 123-162.
https://doi.org/10.1159/000502041
[12] 雍红芳, 戚卉, 吴瑛洁, 等. 视网膜静脉阻塞继发黄斑水肿发病机制及黄斑水肿影响视功能的研究进展[J]. 国际眼科杂志, 2019, 19(11): 1888-1891.
[13] Osaka, R., Nakano, Y., Takasago, Y., et al. (2019) Retinal Oximetry in Branch Retinal Vein Occlusion. Acta Ophthalmologica, 97, 896-901.
https://doi.org/10.1111/aos.14070
[14] Arf, S., Muslubas, I.S., Hocaoglu, M., Ersoz, M.G., Ozdemir, H. and Karacorlu, M. (2020) Spectral Domain Optical Coherence Tomography Classification of Diabetic Macular Edema: A New Proposal to Clinical Practice. Graefe’s Archive for Clinical and Experimental Oph-thalmology, 258, 1165-1172.
https://doi.org/10.1007/s00417-020-04640-9
[15] Reznicek, L., Cse Rhati, S., Seidensticke, R.F., Liegl, R., Kampik, A., Ulbig, M., et al. (2013) Functional and Morphological Changes in Diabetic Macular Edema over the Course of Anti-Vascular Endothelial Growth Factor Treatment. Acta Ophthalmologica, 91, e529-e536.
https://doi.org/10.1111/aos.12153
[16] Konidaris, V.E., Tsaousis, K.T., Anzidei, R., et al. (2018) Real-World Results of Switch-ing Treatment from Ranibizumab to Aflibercept in Macula Roedema Secondary to Branch Retinal Vein Occlusion. Ophthalmology and Therapy, 7, 387-395.
https://doi.org/10.1007/s40123-018-0149-3
[17] Jun, J., Duker, J., Baumal, C., McCabe, F., Reichel, E., Rogers, A., Seddon, J. and Tolentino, F.J.R. (2010) Cystoid Macular Edema without Macular Thickening: A Retrospective Optical Coherence Tomographic Study. Retina, 30, 917-923.
https://doi.org/10.1097/IAE.0b013e3181cbd9e5
[18] Ying, G.S., Huang, J., Maguire, M.G., Jaffe, G.J., Grunwald, J.E., Toth, C., Daniel, E., Klein, M., Pieramici, D., Wells, J. and Martin, D.F. (2013) Compari-son of Age-Related Macular Degeneration Treatments Trials Research Group. Baseline Predictors for One-Year Visual Outcomes with Ranibizumab or Bevacizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology, 120, 122-129.
https://doi.org/10.1016/j.ophtha.2012.07.042
[19] Horani, M., Mahmood, S. and Aslam, T.M. (2019) Macular Atrophy of the Retinal Pigment Epithelium in Patients with Neovascular Age-Related Macular Degeneration: What Is the Link? Part I: A Review of Disease Characterization and Morphological Associations. Ophthalmology and Therapy, 8, 235-249.
https://doi.org/10.1007/s40123-019-0177-7
[20] Sharma, S., Toth, C.A., Daniel, E., Grunwald, J.E., Maguire, M.G., Ying, G.S., Huang, J., Martin, D.F. and Jaffe, G.J. (2016) Comparison of Age-Related Macular Degeneration Treatments Trials Research Group. Macular Morphology and Visual Acuity in the Second Year of the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology, 123, 865-875.
https://doi.org/10.1016/j.ophtha.2015.12.002
[21] Golbaz, I., Ahlers, C., Stock, G., Schütze, C., Schriefl, S., Schlanitz, F., Simader, C., Prünte, C. and Schmidt-Erfurth, U.M. (2011) Quantification of the Therapeutic Response of Intraretinal, Subretinal, and Subpigment Epithelial Compartments in Exudative AMD during Anti-VEGF Therapy. Investigative Oph-thalmology & Visual Science, 52, 1599-1605.
https://doi.org/10.1167/iovs.09-5018
[22] Grechenig, C., Reiter, G.S., Riedl, S., Arnold, J., Guymer, R., Gerendas, B.S., Bogunović, H. and Schmidt-Erfurth, U. (2021) Impact of Residual Subretinal Fluid Volumes on Treatment Outcomes in a Subretinal Fluid-Tolerant Treat-and- Extend Regimen. Retina, 41, 2221-2228.
https://doi.org/10.1097/IAE.0000000000003180
[23] Drexler, W., Sattmann, H., Hermann, B., Ko, T.H., Stur, M., Unterhuber, A., Scholda, C., Findl, O., Wirtitsch, M., Fujimoto, J.G. and Fercher, A.F. (2003) Enhanced Visualization of Macular Pathology with the Use of Ultrahigh Resolution Optical Coherence Tomography. Ar-chives of Ophthalmology, 121, 695-706.
https://doi.org/10.1001/archopht.121.5.695
[24] Srinivasan, V.J., Monson, B.K., Wojtkowski, M., Bilonick, R.A., Gorczynska, I., Chen, R., Duker, J.S., Schuman, J.S. and Fujimotoet, J.G. (2008) Characterization of Outer Retinal Morphology with High-Speed, Ultrahigh-Resolution Optical Coherence Tomography. Investigative Ophthalmology & Visual Science, 49, 1571-1579.
https://doi.org/10.1167/iovs.07-0838
[25] Zhang, X.L., Wen, L., Chen, Y.J. and Zhu, Y. (2009) Vascular Endothelial Growth Factor Up-Regulates the Expression of Intracellular Adhesion Molecule-1 in Retinal Endothelial Cells via Reactive Oxygen Species, But Not Nitric Oxide. Chinese Medical Journal, 122, 338-343.
[26] Gerendas, B.S., Prager, S., Deak, G., Simade, R.C., Lammer, J., Waldstein, S.M., et al. (2018) Predictive Imaging Biomarkers Relevant for Functional and Anatomical Outcomes during Ranibizumab Therapy of Diabetic Macular Oedema. British Journal of Ophthalmology, 102, 195-203.
https://doi.org/10.1136/bjophthalmol-2017-310483
[27] 苏宁, 李莉, 徐帆, 等. 三维OCT分析累及黄斑的视网膜脱离巩膜扣带术后黄斑微结构与视力的关系[J]. 国际眼科杂志, 2021, 21(1): 120-123.
[28] Mori, Y., Suzuma, K., Uji, A., Ishihara, K., Yoshitake, S., Fujimoto, M., et al. (2016) Restoration of Foveal Photoreceptors after Intravitreal Ranibizumab Injections Fordiabetic Macular Edema. Scientific Reports, 6, Article No. 39161.
https://doi.org/10.1038/srep39161
[29] Sun, J.K., Radwan, S.H., Soliman, A.Z., et al. (2015) Neural Retinal Disorganization as a Robust Marker of Visual Acuity in Current and Resolved Diabetic Macularedema. Diabetes, 64, 2560-2570.
https://doi.org/10.2337/db14-0782
[30] Yiu, G., Welch, R.J., Wang, Y.W., et al. (2020) Spectral-Domain OCT Predictors of Visual Outcomes after Ranibizumab Treatment for Macular Edema Resulting from Retinal Vein Occlusion. Ophthalmology Retina, 4, 67-76.
https://doi.org/10.1016/j.oret.2019.08.009
[31] Bolz, M., et al. (2009) Optical Coherence Tomographic Hyperreflective Foci: A Morphologic Sign of Lipid Extravasation in Diabetic Macular Edema. Ophthalmology, 116, 914-920.
https://doi.org/10.1016/j.ophtha.2008.12.039
[32] Chu, S., Nesper, P.L., Soetikno, B.T., Bakri, S.J. and Fawzi, A.A. (2018) Projection-Resolved OCT Angiography of Microvascular Changes in Paracentral Acute Middle Maculopathy and Acute Macular Neu-roretinopathy. Investigative Opthalmology & Visual Science, 59, 2913-2922.
https://doi.org/10.1167/iovs.18-24112
[33] Fang, L.J., Dong, L., Li, Y.F. and Wei, W.B. (2021) Retinal Vein Occlusion and Chronic Kidney Disease: A Meta-Analysis. European Journal of Ophthalmology, 31, 1945-1952.
https://doi.org/10.1177/1120672120937669
[34] Pang, C.E., Messinger, J.D., Zanzottera, E.C., et al. (2015) The Onion Sign in Neovascular Age-Related Macular Degeneration Represents Cholesterol Crystals. Ophthalmology, 122, 2316-2326.
https://doi.org/10.1016/j.ophtha.2015.07.008
[35] Son, W., Jeong, W.J., Park, J.M., Kim, J.Y., Ji, Y.S. and Sagong, M. (2023) Predictors of Treatment Outcomes following Treat-and-Extend Regimen with Aflibercept for Branch Retinal Vein Occlusion: Post-Hoc Analysis of the PLATON Trial. Scientific Reports, 13, Article No. 11730.
https://doi.org/10.1038/s41598-023-38955-4
[36] Markan, A., Agarwal, A., Arora, A., Bazgain, K., Rana, V. and Gupta, V. (2020) Novel Imaging Biomarkers in Diabetic Retinopathy and Diabetic Macular Edema. Therapeutic Advances in Ophthalmology, 12.
https://doi.org/10.1177/2515841420950513
[37] Zhang, K.R., Jankowski, C.S.R., Marshall, R., Nair, R., Más Gómez, N., Al-nemri, A., Liu, Y., Erler, E., Ferrante, J., Song, Y., Bell, B.A., Baumann, B.H., Sterling, J., Anderson, B., Foshe, S., Roof, J., Fazelinia, H., Spruce, L.A., Chuang, J.Z., Sung, C.H., Dhingra, A., Boesze-Battaglia, K., Chavali, V.R.M., Rabinowitz, J.D., Mitchell, C.H. and Dunaief, J.L. (2023) Oxidative Stress Induces Lysosomal Membrane Permeabilization and Ceramide Accumulation in Retinal Pigment Epithelial Cells. Disease Models & Mechanisms, 16, dmm050066.
https://doi.org/10.1242/dmm.050066
[38] Uji, A., Murakami, T., Nishijima, K., et al. (2012) Association between Hyperreflective Foci in the Outer Retina, Status of Photoreceptor Layer, and Visual Acuity in Diabetic Macular Edema. American Journal of Ophthal-mology, 153, 710-717.
https://doi.org/10.1016/j.ajo.2011.08.041
[39] Chen, K.C., Jung, J.J., Curcio, C.A., et al. (2016) Intrareti-nal Hyperreflective Foci in Acquired Vitelliform Lesions of the Macula: Clinical and Histologic Study. American Journal of Ophthal-mology, 164, 89-98.
https://doi.org/10.1016/j.ajo.2016.02.002
[40] Kang, J.W., Lee, H., Chung, H., et al. (2014) Correlation between Optical Coher-ence Tomographic Hyperreflective Foci and Visual Outcomes after Intravitreal Bevacizumab for Macular Edema in Branch Retinal Vein Occlusion. Graefe’s Archive for Clinical and Experimental Ophthalmology, 252, 1413-1421.
https://doi.org/10.1007/s00417-014-2595-5
[41] 栗怡然, 朱瑞琳, 杨柳. 炎症在视网膜静脉阻塞性黄斑水肿中的作用[J]. 眼科新进展, 2020, 40(1): 90-94.
[42] Mo, B., Zhou, H.Y., Jiao, X., et al. (2017) Evaluation of Hyperreflective Foci as a Prognostic Factor of Visual Outcome in Retinal Vein Occlusion. International Journal of Ophthalmology, 10, 605-612.
https://doi.org/10.18240/ijo.2017.04.17
[43] Chu, Y.K., Hong, Y.T., Byeon, S.H. and Kwon, O.W. (2013) In vivo Detection of Acute Ischemic Damages in Retinal Arterial Occlusion with Optical Coherence Tomography: A “Prominent Middle Limiting Membrane Sign”. Retina, 33, 2110-2117.
https://doi.org/10.1097/IAE.0b013e3182899205
[44] Sarraf, D., Rahimy, E., Fawzi, A.A., et al. (2013) Paracentral Acute Middle Maculopathy: A New Variant of Acute Macular Neuroretinopathy Associated with Retinal Capillary Ischemia. JAMA Ophthalmology, 131, 1275-1287.
https://doi.org/10.1001/jamaophthalmol.2013.4056
[45] Nishijima, K., Murakami, T., Hirashima, T., et al. (2014) Hyperreflective Foci in Outer Retina Predictive of Photoreceptor Damage and Poor Vision after Vitrectomy for Diabetic Macular Edema. Retina, 34, 732-740.
https://doi.org/10.1097/IAE.0000000000000005
[46] Scharf, J., Freund, K.B., Sadda, S. and Sarraf, D. (2021) Paracentral Acute Middle Maculopathy and the Organization of the Retinal Capillary Plexuses. Progress in Retinal and Eye Research, 81, Article ID: 100884.
https://doi.org/10.1016/j.preteyeres.2020.100884
[47] Burnasheva, M.A., Maltsev, D.S., Kulikov, A.N., Sherbakova, K.A. and Barsukov, A.V. (2020) Association of Chronic Paracentral Acute Middle Maculopathy Lesions with Hypertension. Ophthalmology Retina, 4, 504-509.
https://doi.org/10.1016/j.oret.2019.12.001