|
[1]
|
Gunning, A.C., Lansink, K.W.W., van Wessem, K.J.P., Balogh, Z.J., Rivara, F.P., Maier, R.V. and Leenen, L.P.H. (2015) Demographic Patterns and Outcomes of Patients in Level I Trauma Centers in Three International Trauma Sys-tems. World Journal of Surgery, 39, 2677-2684. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Carnevale, J.A., Segar, D.J., Powers, A.Y., Shah, M., Doberstein, C., Drapcho, B., Morrison, J.F., Williams, J.R., Collins, S., Monteiro, K. and Asaad, W.F. (2018) Blossoming Contusions: Identifying Factors Contributing to the Expansion of Traumatic In-tracerebral Hemorrhage. Journal of Neurosurgery, 129, 1305-1316. [Google Scholar] [CrossRef]
|
|
[3]
|
Chang, E.F., Meeker, M. and Holland, M.C. (2007) Acute Trau-matic Intraparenchymal Hemorrhage: Risk Factors for Progression in the Early Post-Injury Period. Neurosurgery, 61, 231. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lobato, R.D., Gomez, P.A., Alday, R., Rivas, J.J., Dominguez, J., Cabrera, A., Turanzas, F.S., Benitez, A. and Rivero, B. (1997) Sequential Computerized Tomography Changes and Related Final Outcome in Severe Head Injury Patients. Acta Neurochirurgica, 139, 385-391. [Google Scholar] [CrossRef]
|
|
[5]
|
Servadei, F., Nanni, A., Nasi, M.T., Zappi, D., Vergoni, G., Giuliani, G. and Arista, A. (1995) Evolving Brain Lesions in the First 12 Hours after Head Injury: Analysis of 37 Comatose Patients. Neurosurgery, 37, 899-907. [Google Scholar] [CrossRef]
|
|
[6]
|
Adatia, K., Newcombe, V.F.J. and Menon, D.K. (2021) Contusion Progression Following Traumatic Brain Injury: A Review of Clinical and Radiological Predictors, and Influ-ence on Outcome. Neurocritical Care, 34, 312-324. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Inoue, Y., Miyashita, F., Toyoda, K. and Minematsu, K. (2013) Low Serum Calcium Levels Contribute to Larger Hematoma Volume in Acute Intracerebral Hemorrhage. Stroke, 44, 2004-2006.
https://pubmed.ncbi.nlm.nih.gov/23674530/
|
|
[8]
|
Zhu, R.D., He, X.L., Du, Y.Q., et al. (2020) The Relationship between Low Serum Magnesium Level and Intracerebral Hemorrhage Hematoma Expansion: Protocol for a Systematic Review and Meta-Analysis. Medicine, 99, e18719.
https://pubmed.ncbi.nlm.nih.gov/31914086/
|
|
[9]
|
Hoyt, D.B. (2004) A Clinical Review of Bleeding Dilemmas in Trauma. Seminars in Hematology, 41, 40-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Greuters, S., van den Berg, A., Franschman, G., Viersen, V.A., Beishuizen, A., Peerdeman, S.M., Boer, C. and ALARM- BLEEDING Investigators (2011) Acute and Delayed Mild Coagulopathy Are Related to Outcome in Patients with Isolated Traumatic Brain Injury. Critical Care, 15, Article No. R2. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kurland, D., Hong, C., Aarabi, B., Gerzanich, V. and Marc Simard, J. (2012) Hemorrhagic Progression of a Contusion after Traumatic Brain Injury: A Review. Journal of Neurotrauma, 29, 19-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Loggini, A., El Ammar, F., Mansour, A., Kramer, C.L., Gold-enberg, F.D. and Lazaridis, C. (2021) Association between Electrolyte Levels at Presentation and Hematoma Expansion and Outcome in Spontaneous Intracerebral Hemorrhage: A Systematic Review. Journal of Critical Care, 61, 177-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Jafari, M., Di Napoli, M., Datta, Y.H., Bershad, E.M. and Divani, A.A. (2019) The Role of Serum Calcium Level in Intracerebral Hemorrhage Hematoma Expansion: Is There Any? Neu-rocritical Care, 31, 188-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, P., Tu, Q., Ni, Z.H., Zheng, Z.Z., Chen, Y., Yan, L., Bao, H., Zhuge, Q.C. and Ni, H.Q. (2022) Association between Serum Calcium Level and Hemorrhagic Progression in Pa-tients with Traumatic Intraparenchymal Hemorrhage: Investigating the Mediation and Interaction Effects of Coagulopathy. Journal of Neurotrauma, 39, 508-519. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Weber, J.T. (2012) Altered Calcium Signaling following Traumatic Brain Injury. Frontiers in Pharmacology, 3, Article 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Deshpande, L.S., Sun, D.A., Sombati, S., Baranova, A., Wilson, M.S., Attkisson, E., Hamm, R.J. and DeLorenzo, R.J. (2008) Alter-ations in Neuronal Calcium Levels Are Associated with Cognitive Deficits after Traumatic Brain Injury. Neuroscience Letters, 441, 115-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Weber, J.T. (2004) Calcium Homeostasis following Traumatic Neuronal Injury. Current Neurovascular Research, 1, 151-171. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gurkoff, G., Shahlaie, K., Lyeth, B. and Berman, R. (2013) Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury. Pharmaceuticals, 6, 788-812. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Badarni, K., Harush, N., Andrawus, E., Bahouth, H., Bar-Lavie, Y., Raz, A., Roimi, M. and Epstein, D. (2023) Association between Admission Ionized Calcium Level and Neurological Outcome of Patients with Isolated Severe Traumatic Brain Injury: A Retrospective Cohort Study. Neurocritical Care. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Blight, A.R. (1992) Macrophages and Inflammatory Damage in Spinal Cord Injury. Journal of Neurotrauma, 9, S83-S91.
|
|
[21]
|
Hampton, M.B., Kettle, A.J. and Winterbourn, C.C. (1998) Inside the Neutrophil Phagosome: Oxidants, Myeloperoxidase, and Bacterial Killing. Blood, 92, 3007-3017.
|
|
[22]
|
Whitney, N.P., Eidem, T.M., Peng, H., Huang, Y.L. and Zheng, J.C. (2009) Inflammation Mediates Varying Effects in Neurogenesis: Relevance to the Pathogenesis of Brain Injury and Neurodegenerative Disorders. Journal of Neurochemistry, 108, 1343-1359. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ryter, S.W., Kim, H.P., Hoetzel, A., Park, J.W., Nakahira, K., Wang, X. and Choi, A.M.K. (2007) Mechanisms of Cell Death in Ox-idative Stress. Antioxidants & Redox Signaling, 9, 49-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Smith, J.A. (1994) Neutrophils, Host Defense, and Inflammation: A Double-Edged Sword. Journal of Leukocyte Biology, 56, 672-686. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Maxwell, W.L., Watt, C., Graham, D.I. and Gennarelli, T.A. (1993) Ultrastructural Evidence of Axonal Shearing as a Result of Lateral Acceleration of the Head in Non-Human Pri-mates. Acta Neuropathologica, 86, 136-144. [Google Scholar] [CrossRef]
|
|
[26]
|
Brittain, M.K., et al. (2012) Delayed Calcium Dysregulation in Neurons Requires Both the NMDA Receptor and the Reverse Na+/Ca2+ Exchanger. Neurobiology of Disease, 46, 109-117. https://pubmed.ncbi.nlm.nih.gov/22249110/
|
|
[27]
|
Garthwaite, G., Hajós, F. and Garthwaite, J. (1986) Ionic Re-quirements for Neurotoxic Effects of Excitatory Amino Acid Analogues in Rat Cerebellar Slices. Neuroscience, 18, 437-447. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Van Beek, J.G.M., Mushkudiani, N.A., Steyerberg, E.W., Butcher, I., McHugh, G.S., Lu, J., Marmarou, A., Murray, G.D. and Maas, A.I.R. (2007) Prognostic Value of Admission Laboratory Parameters in Traumatic Brain Injury: Results from the IMPACT Study. Journal of Neurotrauma, 24, 315-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Juratli, T.A., Zang, B., Litz, R.J., Sitoci, K.H., Aschen-brenner, U., Gottschlich, B., Daubner, D., Schackert, G. and Sobottka, S.B. (2014) Early Hemorrhagic Progression of Traumatic Brain Contusions: Frequency, Correlation with Coagulation Disorders, and Patient Outcome: A Prospective Study. Journal of Neurotrauma, 31, 1521-1527. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Maegele, M., Schöchl, H., Menovsky, T., Maréchal, H., Marklund, N., Buki, A. and Stanworth, S. (2017) Coagulopathy and Haemorrhagic Progression in Traumatic Brain Injury: Advances in Mechanisms, Diagnosis, and Management. The Lancet Neurology, 16, 630-647. [Google Scholar] [CrossRef]
|
|
[31]
|
Folkerson, L.E., Sloan, D., Cotton, B.A., Holcomb, J.B., Tomasek, J.S. and Wade, C.E. (2015) Predicting Progressive Hemorrhagic Injury from Isolated Traumatic Brain Injury and Coagulation. Surgery, 158, 655-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
White, C.L., Griffith, S. and Caron, J.L. (2009) Early Progression of Traumatic Cerebral Contusions: Characterization and Risk Factors. The Journal of Trauma: Injury, Infection, and Critical Care, 67, 508-515. [Google Scholar] [CrossRef]
|
|
[33]
|
Yuan, Q., Sun, Y.R., Wu, X., Yu, J., Li, Z.Q., Du, Z.Y., Wu, X.H., Zhou, L.F. and Hu, J. (2016) Coagulopathy in Traumatic Brain Injury and Its Correlation with Progressive Hem-orrhagic Injury: A Systematic Review and Meta-Analysis. Journal of Neurotrauma, 33, 1279-1291. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Chang, E.F., Meeker, M. and Holland, M.C. (2006) Acute Traumatic Intraparenchymal Hemorrhage: Risk Factors for Progression in the Early Post-Injury Period. Neurosurgery, 58, 647-656. [Google Scholar] [CrossRef]
|
|
[35]
|
Inoue, Y., Miyashita, F., Toyoda, K. and Minematsu, K. (2013) Low Serum Calcium Levels Contribute to Larger Hematoma Volume in Acute Intracerebral Hemorrhage. Stroke, 44, 2004-2006. [Google Scholar] [CrossRef]
|
|
[36]
|
Peacock, M. (2010) Calcium Metabolism in Health and Disease. Clinical Journal of the American Society of Nephrology, 5, S23-S30. https://pubmed.ncbi.nlm.nih.gov/20089499/
|
|
[37]
|
Veldurthy, V., et al. (2016) Vitamin D, Calcium Homeostasis and Aging. Bone Research, 4, Article ID: 16041.
https://pubmed.ncbi.nlm.nih.gov/27790378/
|
|
[38]
|
De Robertis, E., Kozek-Langenecker, S.A., Tufano, R., Romano, G.M., Piazza, O. and Zito Marinosci, G. (2015) Coagulopathy Induced by Acidosis, Hypothermia and Hypocalcaemia in Severe Bleeding. Minerva Anestesiologica, 81, 65-75.
|
|
[39]
|
Wolberg, A.S. (2007) Thrombin Generation and Fibrin Clot Structure. Blood Reviews, 21, 131-142. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Nesbitt, W.S., Giuliano, S., Kulkarni, S., Dopheide, S.M., Harper, I.S. and Jackson, S.P. (2003) Intercellular Calcium Communication Regulates Platelet Aggregation and Thrombus Growth. Journal of Cell Biology, 160, 1151-1161. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Jackson, S.P., Nesbitt, W.S. and Kulkarni, S. (2003) Signaling Events Underlying Thrombus Formation. Journal of Thrombosis and Haemostasis, 1, 1602-1612. https://pubmed.ncbi.nlm.nih.gov/12871297/
|
|
[42]
|
Qi, H.Y., et al. (2016) Anti-Platelet Activity of Panaxatriol Sapo-nins Is Mediated by Suppression of Intracellular Calcium Mobilization and ERK2/p38 Activation. BMC Complementary and Alternative Medicine, 16, Article 174.
https://pubmed.ncbi.nlm.nih.gov/27277000/
|
|
[43]
|
Rumbaut, R.E. and Thiagarajan, P. (2010) Platelet-Vessel Wall Interactions in Hemostasis and Thrombosis. Morgan & Claypool Life Sciences, San Rafael. http://www.ncbi.nlm.nih.gov/books/NBK53450/ [Google Scholar] [CrossRef]
|
|
[44]
|
Gryglewski, R.J. (2008) Prostacyclin among Pros-tanoids. Pharmacological Reports, 60, 3-11.
https://pubmed.ncbi.nlm.nih.gov/18276980/
|
|
[45]
|
Choi, D.W. (1985) Glutamate Neurotoxicity in Cortical Cell Cul-ture Is Calcium Dependent. Neuroscience Letters, 58, 293-297. https://pubmed.ncbi.nlm.nih.gov/2413399/
|
|
[46]
|
Han, R.Z., Hu, J.J., Weng, Y.C., Li, D.F. and Huang, Y. (2009) NMDA Receptor Antagonist MK-801 Reduces Neuronal Damage and Preserves Learning and Memory in a Rat Model of Traumatic Brain Injury. Neuroscience Bulletin, 25, 367-375. https://pubmed.ncbi.nlm.nih.gov/19927173/
|
|
[47]
|
Sönmez, A., et al. (2015) Europrotective Effects of MK-801 against Traumatic Brain Injury in Immature Rats.
https://pubmed.ncbi.nlm.nih.gov/?term=europrotective+effects+of++MK%E2%80%91801
+against+traumatic+brain+injury+in+immature+rats
|
|
[48]
|
Bailey, I., et al. (1991) A Trial of the Effect of Nimodipine on Outcome after Head Injury. Acta Neurochirurgica, 110, 97-105. https://pubmed.ncbi.nlm.nih.gov/1927616/
|
|
[49]
|
Murray, G.D., Teas-dale, G.M. and Schmitz, H. (1996) Nimodipine in Traumatic Subarachnoid Haemorrhage: A Re- Analysis of the HIT I and HIT II Trials. Acta Neurochirurgica, 138, 1163-1167.
https://pubmed.ncbi.nlm.nih.gov/8955434/
|
|
[50]
|
Langham, J., Goldfrad, C., Teasdale, G., Shaw, D. and Rowan, K. (2003) Calcium Channel Blockers for Acute Traumatic Brain Injury. Cochrane Database of Systematic Reviews, 4, CD000565. [Google Scholar] [CrossRef]
|