[1]
|
(2018) Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupation-al, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1923-1994.
|
[2]
|
Mills, K.T., Bundy, J.D., Kelly, T.N., et al. (2016) Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of Population-Based Studies from 90 Countries. Circulation, 134, 441-450.
https://doi.org/10.1161/CIRCULATIONAHA.115.018912
|
[3]
|
Lauder, L., Azizi, M., Kirtane, A.J., et al. (2020) Device-Based Therapies for Arterial Hypertension. Nature Reviews Cardiology, 17, 614-628. https://doi.org/10.1038/s41569-020-0364-1
|
[4]
|
王捷. 2021年欧洲高血压学会关于经导管去肾交感神经术立场文件的解读: 经导管去肾交感神经术真的要来了! [J]. 中国介入心脏病学杂志, 2021, 29(10): 554-557.
|
[5]
|
Osborn, J.W., Tyshynsky, R. and Vulchanova, L. (2021) Function of Renal Nerves in Kidney Physiology and Pathophysiology. Annual Review of Physiology, 83, 429-450. https://doi.org/10.1146/annurev-physiol-031620-091656
|
[6]
|
胡鑫渝, 周浩, 李丹, 等. 聚焦去肾交感神经术发展的关键——患者选择与精准消融[J]. 中国介入心脏病学杂志, 2023, 31(3): 213-218.
|
[7]
|
Tanaka, S. and Okusa, M.D. (2020) Crosstalk between the Nervous System and the Kidney. Kidney International, 97, 466-476. https://doi.org/10.1016/j.kint.2019.10.032
|
[8]
|
Hering, D., Marusic, P., Walton, A.S., et al. (2014) Sustained Sympathetic and Blood Pressure Reduction 1 Year after Renal Denervation in Patients with Resistant Hypertension. Hy-pertension, 64, 118-124.
https://doi.org/10.1161/HYPERTENSIONAHA.113.03098
|
[9]
|
Hering, D., Lambert, E.A., Marusic, P., et al. (2013) Substantial Reduction in Single Sympathetic Nerve Firing after Renal Denervation in Patients with Resistant Hy-pertension. Hypertension, 61, 457-464.
https://doi.org/10.1161/HYPERTENSIONAHA.111.00194
|
[10]
|
Krum, H., Schlaich, M., Whitbourn, R., et al. (2009) Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Multicentre Safety and Proof-of-Principle Cohort Study. The Lancet, 373, 1275-1281.
https://doi.org/10.1016/S0140-6736(09)60566-3
|
[11]
|
Krum, H., Schlaich, M.P., Sobotka, P.A., et al. (2014) Per-cutaneous Renal Denervation in Patients with Treatment- Resistant Hypertension: Final 3-Year Report of the Symplicity HTN-1 Study. The Lancet, 383, 622-629.
https://doi.org/10.1016/S0140-6736(13)62192-3
|
[12]
|
Esler, M.D., Krum, H., Sobotka, P.A., et al. (2010) Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Random-ised Controlled Trial. The Lancet, 376, 1903-1909.
https://doi.org/10.1016/S0140-6736(10)62039-9
|
[13]
|
Bhatt, D.L., Kandzari, D.E., O’neill, W.W., et al. (2014) A Controlled Trial of Renal Denervation for Resistant Hypertension. The New England Journal of Medicine, 370, 1393-1401. https://doi.org/10.1056/NEJMoa1402670
|
[14]
|
Persu, A., Jin, Y., Baelen, M., et al. (2014) Eligibility for Renal Denervation: Experience at 11 European Expert Centers. Hypertension, 63, 1319-1325. https://doi.org/10.1161/HYPERTENSIONAHA.114.03194
|
[15]
|
Kandzari, D.E., Bhatt, D.L., Brar, S., et al. (2015) Predictors of Blood Pressure Response in the Symplicity HTN-3 Trial. European Heart Journal, 36, 219-227. https://doi.org/10.1093/eurheartj/ehu441
|
[16]
|
Mahfoud, F., Tunev, S., Ewen, S., et al. (2015) Impact of Lesion Placement on Efficacy and Safety of Catheter-Based Radiofrequency Renal Denervation. Journal of the American College of Cardiology, 66, 1766-1775.
https://doi.org/10.1016/j.jacc.2015.08.018
|
[17]
|
Azizi, M., Sapoval, M., Gosse, P., et al. (2015) Optimum and Stepped Care Standardised Antihypertensive Treatment with or without Renal Denervation for Resistant Hypertension (DENERHTN): A Multicentre, Open-Label, Randomised Controlled Trial. The Lancet, 385, 1957-1965. https://doi.org/10.1016/S0140-6736(14)61942-5
|
[18]
|
Mahfoud, F., Böhm, M., Azizi, M., et al. (2015) Proceedings from the European Clinical Consensus Conference for Renal Denervation: Considerations on Future Clinical Trial Design. European Heart Journal, 36, 2219-2227.
https://doi.org/10.1093/eurheartj/ehv192
|
[19]
|
Kandzari, D.E., Kario, K., Mahfoud, F., et al. (2016) The SPYRAL HTN Global Clinical Trial Program: Rationale and Design for Studies of Renal Denervation in the Absence (SPYRAL HTN OFF-MED) and Presence (SPYRAL HTN ON-MED) of Antihypertensive Medications. American Heart Journal, 171, 82-91.
https://doi.org/10.1016/j.ahj.2015.08.021
|
[20]
|
Mahfoud, F., Schmieder, R.E., Azizi, M., et al. (2017) Proceedings from the 2nd European Clinical Consensus Conference for Device-Based Therapies for Hypertension: State of the Art and Considerations for the Future. European Heart Journal, 38, 3272-3281. https://doi.org/10.1093/eurheartj/ehx215
|
[21]
|
Townsend, R.R., Mahfoud, F., Kandzari, D.E., et al. (2017) Cathe-ter-Based Renal Denervation in Patients with Uncontrolled Hypertension in the Absence of Antihypertensive Medications (SPYRAL HTN-OFF MED): A Randomised, Sham-Controlled, Proof-of-Concept Trial. The Lancet, 390, 2160-2170.
https://doi.org/10.1016/S0140-6736(17)32281-X
|
[22]
|
Kandzari, D.E., Böhm, M., Mahfoud, F., et al. (2018) Effect of Renal Denervation on Blood Pressure in the Presence of Antihypertensive Drugs: 6-Month Efficacy and Safety Re-sults from the SPYRAL HTN-ON MED Proof-of-Concept Randomised Trial. The Lancet, 391, 2346-2355. https://doi.org/10.1016/S0140-6736(18)30951-6
|
[23]
|
Böhm, M., Townsend, R.R., Kario, K., et al. (2020) Ra-tionale and Design of Two Randomized Sham-Controlled Trials of Catheter-Based Renal Denervation in Subjects with Uncontrolled Hypertension in the Absence (SPYRAL HTN-OFF MED Pivotal) and Presence (SPYRAL HTN-ON MED Expansion) of Antihypertensive Medications: A Novel Approach Using Bayesian Design. Clinical Research in Cardiology, 109, 289-302.
https://doi.org/10.1007/s00392-020-01595-z
|
[24]
|
Böhm, M., Kario, K., Kandzari, D.E., et al. (2020) Efficacy of Catheter-Based Renal Denervation in the Absence of Antihypertensive Medications (SPYRAL HTN-OFF MED Pivotal): A Multicentre, Randomised, Sham-Controlled Trial. The Lancet, 395, 1444-1451. https://doi.org/10.1016/S0140-6736(20)30554-7
|
[25]
|
Mahfoud, F., Kandzari, D.E., Kario, K., et al. (2022) Long-Term Efficacy and Safety of Renal Denervation in the Presence of Antihypertensive Drugs (SPYRAL HTN-ON MED): A Randomised, Sham-Controlled Trial. The Lancet, 399, 1401-1410. https://doi.org/10.1016/S0140-6736(22)00455-X
|
[26]
|
Mauri, L., Kario, K., Basile, J., et al. (2018) A Multinational Clinical Approach to Assessing the Effectiveness of Catheter-Based Ultrasound Renal Denervation: The RADIANCE-HTN and REQUIRE Clinical Study Designs. American Heart Journal, 195, 115-129. https://doi.org/10.1016/j.ahj.2017.09.006
|
[27]
|
Azizi, M., Schmieder, R.E., Mahfoud, F., et al. (2018) Endovascular Ultrasound Renal Denervation to Treat Hypertension (RADIANCE-HTN SOLO): A Multicentre, International, Sin-gle-Blind, Randomised, Sham-Controlled Trial. The Lancet, 391, 2335-2345. https://doi.org/10.1016/S0140-6736(18)31082-1
|
[28]
|
Azizi, M., Schmieder, R.E., Mahfoud, F., et al. (2019) Six-Month Results of Treatment-Blinded Medication Titration for Hypertension Control after Randomization to Endo-vascular Ultrasound Renal Denervation or a Sham Procedure in the RADIANCE-HTN SOLO Trial. Circulation, 139, 2542-2553.
https://doi.org/10.1161/CIRCULATIONAHA.119.040451
|
[29]
|
Azizi, M., Daemen, J., Lobo, M.D., et al. (2020) 12-Month Results from the Unblinded Phase of the RADIANCE- HTN SOLO Trial of Ultrasound Renal Denervation. JACC: Cardiovascular Interventions, 13, 2922-2933.
https://doi.org/10.1016/j.jcin.2020.09.054
|
[30]
|
Azizi, M., Sanghvi, K., Saxena, M., et al. (2021) Ultrasound Renal Denervation for Hypertension Resistant to a Triple Medication Pill (RADIANCE-HTN TRIO): A Randomised, Multi-centre, Single-Blind, Sham-Controlled Trial. The Lancet, 397, 2476-2486. https://doi.org/10.1016/S0140-6736(21)00788-1
|
[31]
|
Kario, K., Yokoi, Y., Okamura, K., et al. (2022) Cathe-ter-Based Ultrasound Renal Denervation in Patients with Resistant Hypertension: The Randomized, Controlled REQUIRE Trial. Hypertension Research: Official Journal of the Japanese Society of Hypertension, 45, 221-231. https://doi.org/10.1038/s41440-021-00754-7
|
[32]
|
Mahfoud, F., Böhm, M., Schmieder, R., et al. (2019) Effects of Renal Denervation on Kidney Function and Long-Term Outcomes: 3-Year Follow-Up from the Global SYMPLICITY Registry. European Heart Journal, 40, 3474-3482. https://doi.org/10.1093/eurheartj/ehz118
|
[33]
|
Townsend, R.R., Walton, A., Hettrick, D.A., et al. (2020) Review and Meta-Analysis of Renal Artery Damage Following Percutaneous Renal Denervation with Radiofrequency Renal Artery Ablation. EuroIntervention, 16, 89-96.
https://doi.org/10.4244/EIJ-D-19-00902
|
[34]
|
Kordalis, A., Tsiachris, D., Pietri, P., et al. (2018) Regression of Or-gan Damage Following Renal Denervation in Resistant Hypertension: A Meta-Analysis. Journal of Hypertension, 36, 1614-1621.
https://doi.org/10.1097/HJH.0000000000001798
|
[35]
|
Thomopoulos, C., Parati, G. and Zanchetti, A. (2014) Ef-fects of Blood Pressure Lowering on Outcome Incidence in Hypertension. 1. Overview, Meta-Analyses, and Me-ta-Regression Analyses of Randomized Trials. Journal of Hypertension, 32, 2285-2295. https://doi.org/10.1097/HJH.0000000000000378
|
[36]
|
Ettehad, D., Emdin, C.A., Kiran, A., et al. (2016) Blood Pressure Lowering for Prevention of Cardiovascular Disease and Death: A Systematic Review and Meta-Analysis. The Lancet, 387, 957-967.
https://doi.org/10.1016/S0140-6736(15)01225-8
|
[37]
|
(2021) Pharmacological Blood Pressure Lowering for Pri-mary and Secondary Prevention of Cardiovascular Disease across Different Levels of Blood Pressure: An Individual Participant-Level Data Meta-Analysis. The Lancet, 397, 1625-1636.
|
[38]
|
Townsend, R.R. and Sobotka, P.A. (2018) Catheter-Based Renal Denervation for Hypertension. Current Hypertension Reports, 20, Article No. 93. https://doi.org/10.1007/s11906-018-0896-5
|
[39]
|
Messerli, F.H., Bangalore, S. and Schmieder, R.E. (2015) Wil-der’s Principle: Pre-Treatment Value Determines Post-Treatment Response. European Heart Journal, 36, 576-579. https://doi.org/10.1093/eurheartj/ehu467
|
[40]
|
Mahfoud, F., Mancia, G., Schmieder, R., et al. (2020) Renal Dener-vation in High-Risk Patients with Hypertension. Journal of the American College of Cardiology, 75, 2879-2888. https://doi.org/10.1016/j.jacc.2020.04.036
|
[41]
|
Mahfoud, F., Bakris, G., Bhatt, D.L., et al. (2017) Reduced Blood Pressure-Lowering Effect of Catheter-Based Renal Denervation in Patients with Isolated Systolic Hypertension: Data from SYMPLICITY HTN-3 and the Global SYMPLICITY Registry. European Heart Journal, 38, 93-100. https://doi.org/10.1093/eurheartj/ehw325
|
[42]
|
Fengler, K., Rommel, K.-P., Lapusca, R., et al. (2019) Renal Dener-vation in Isolated Systolic Hypertension Using Different Catheter Techniques and Technologies. Hypertension, 74, 341-348.
https://doi.org/10.1161/HYPERTENSIONAHA.119.13019
|
[43]
|
Van Amsterdam, W.A.C., Blankestijn, P.J., Goldschmeding, R., et al. (2016) The Morphological Substrate for Renal Denervation: Nerve Distribution Patterns and Parasympathetic Nerves. A Post-Mortem Histological Study. Annals of Anatomy, 204, 71-79. https://doi.org/10.1016/j.aanat.2015.11.004
|
[44]
|
Mompeo, B., Maranillo, E., Garcia-Touchard, A., et al. (2016) The Gross Anatomy of the Renal Sympathetic Nerves Revisited. Clinical Anatomy, 29, 660-664. https://doi.org/10.1002/ca.22720
|
[45]
|
Kiuchi, M.G., Esler, M.D., Fink, G.D., et al. (2019) Renal Denervation Up-date from the International Sympathetic Nervous System Summit: JACC State-of-the-Art Review. Journal of the Ameri-can College of Cardiology, 73, 3006-3017. https://doi.org/10.1016/j.jacc.2019.04.015
|
[46]
|
Liu, H., Chen, W., Lai, Y., et al. (2019) Selective Renal Denervation Guided by Renal Nerve Stimulation in Canine. Hypertension, 74, 536-545. https://doi.org/10.1161/HYPERTENSIONAHA.119.12680
|
[47]
|
Chinushi, M., Izumi, D., Iijima, K., et al. (2013) Blood Pressure and Autonomic Responses to Electrical Stimulation of the Renal Arterial Nerves before and after Ablation of the Renal Artery. Hypertension, 61, 450-456.
https://doi.org/10.1161/HYPERTENSIONAHA.111.00095
|
[48]
|
De Jong, M.R., Adiyaman, A., Gal, P., et al. (2016) Renal Nerve Stimulation-Induced Blood Pressure Changes Predict Ambulatory Blood Pressure Response after Renal Denervation. Hypertension, 68, 707-714.
https://doi.org/10.1161/HYPERTENSIONAHA.116.07492
|
[49]
|
Wang, J., Sun, N., Ge, J., et al. (2023) Rationale and Design of Sympathetic Mapping/Ablation of Renal Nerves Trial (SMART) for the Treatment of Hypertension: A Prospective, Multicenter, Single-Blind, Randomized and Sham Procedure-Controlled Study. Journal of Cardiovascular Translational Research, 16, 358-370.
https://doi.org/10.1007/s12265-022-10307-z
|