|
[1]
|
Rouanet, C. and Silva, G.S. (2019) Aneurysmal Subarachnoid Hemorrhage: Current Concepts and Updates. Arquivos de Neuro-Psiquiatria, 77, 806-814. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Neifert, S.N., Chapman, E.K., Martini, M.L., et al. (2021) Aneurysmal Subarachnoid Hemorrhage: The Last Decade. Translational Stroke Research, 12, 428-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
English, S.W. (2020) Long-Term Outcome and Eco-nomic Burden of Aneurysmal Subarachnoid Hemorrhage: Are We Only Seeing the Tip of the Iceberg? Neurocritical Care, 33, 37-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ruhatiya, R.S., Adukia, S.A., Manjunath, R.B. and Maheshwarappa, H.M. (2020) Current Status and Recommendations in Multimodal Neuromonitoring. Indian Jour-nal of Critical Care Medicine: Peer-Reviewed, Official Publication of Indian Society of Critical Care Medicine, 24, 353-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rivera Lara, L. and Püttgen, H.A. (2018) Multi-modality Monitoring in the Neurocritical Care Unit. Continuum, 24, 1776-1788. [Google Scholar] [CrossRef]
|
|
[6]
|
Makarenko, S., Griesdale, D.E., Gooderham, P. and Sekhon, M.S. (2016) Multimodal Neuromonitoring for Traumatic Brain Injury: A Shift towards Individualized Therapy. Journal of Clinical Neuroscience, 26, 8-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Aronson, J.K. and Ferner, R.E. (2017) Biomarkers—A General Review. Current Protocols in Pharmacology, 76, 9.23.1-9.23.17. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chauin, A. (2021) The Main Causes and Mechanisms of Increase in Cardiac Troponin Concentrations Other than Acute Myocardial Infarction (Part 1): Physical Exertion, Inflammatory Heart Disease, Pulmonary Embolism, Renal Failure, Sepsis. Vascu-lar Health and Risk Management, 17, 601-617. [Google Scholar] [CrossRef]
|
|
[9]
|
Kaier, T.E., Alaour, B. and Marber, M. (2021) Cardiac Troponin and Defining Myocardial Infarction. Cardiovascular Research, 117, 2203-2215. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Levey, A.S., Coresh, J., Tighiouart, H., Greene, T. and Inker, L.A. (2020) Measured and Estimated Glomerular Filtration Rate: Current Status and Future Directions. Nature Reviews Nephrology, 16, 51-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Pinsino, A., Mondellini, G.M., Royzman, E.A., et al. (2020) Cystatin C- versus Creatinine-Based Assessment of Renal Function and Prediction of Early Outcomes among Patients with a Left Ventricular Assist Device. Circulation Heart Failure, 13, e006326. [Google Scholar] [CrossRef]
|
|
[12]
|
Chou, S.H. and Robertson, C.S. (2014) Moni-toring Biomarkers of Cellular Injury and Death in Acute Brain Injury. Neurocritical Care, 21, 187-214. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chou, S.H., Macdonald, R.L. and Keller, E. (2019) Biospecimens and Molecular and Cellular Biomarkers in Aneurysmal Subarachnoid Hemorrhage Studies: Common Data Elements and Standard Reporting Recommendations. Neurocritical Care, 30, 46-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lai, P.M. and Du, R. (2016) Association between S100B Levels and Long-Term Outcome after Aneurysmal Subarachnoid Hemorrhage: Systematic Review and Pooled Analysis. PLOS ONE, 11, e0151853. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Wiesmann, M., Missler, U., Hagenström, H. and Gottmann, D. (1997) S-100 Protein Plasma Levels after Aneurysmal Subarachnoid Haemorrhage. Acta Neurochirurgica, 139, 1155-1160. [Google Scholar] [CrossRef]
|
|
[16]
|
Balança, B., Ritzenthaler, T., Gobert, F., et al. (2020) Sig-nificance and Diagnostic Accuracy of Early S100B Serum Concentration after Aneurysmal Subarachnoid Hemorrhage. Journal of Clinical Medicine, 9, Article 1746. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kedziora, J., Burzynska, M., Gozdzik, W., et al. (2021) Biomarkers of Neurological Outcome after Aneurysmal Subarachnoid Hemorrhage as Early Predictors at Discharge from an Intensive Care Unit. Neurocritical Care, 34, 856-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Amiri, M., Astrand, R. and Romner, B. (2013) Can S100B Pre-dict Cerebral Vasospasms in Patients Suffering from Subarachnoid Hemorrhage? Frontiers in Neurology, 4, Article 65. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Moritz, S., Warnat, J., Bele, S., et al. (2010) The Prognostic Value of NSE and S100B from Serum and Cerebrospinal Fluid in Patients with Spontaneous Subarachnoid Hemorrhage. Journal of Neurosurgical Anesthesiology, 22, 21-31. [Google Scholar] [CrossRef]
|
|
[20]
|
Tawk, R.G., Grewal, S.S., Heckman, M.G., et al. (2016) The Relationship between Serum Neuron-Specific Enolase Levels and Severity of Bleeding and Functional Outcomes in Patients with Nontraumatic Subarachnoid Hemorrhage. Neurosurgery, 78, 487-491. [Google Scholar] [CrossRef]
|
|
[21]
|
Sahu, S., Nag, D.S., Swain, A. and Samaddar, D.P. (2017) Biochemical Changes in the Injured Brain. World Journal of Biological Chemistry, 8, 21-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Yuan, Y., Chen, J., Zhang, Y., et al. (2022) Exploration of Risk Factors for Poor Prognosis of Non-Traumatic Non-Aneurysmal Subarachnoid Hemorrhage. Biomolecules, 12, 948.
|
|
[23]
|
Zhao, H., Shang, F., Qi, M., et al. (2022) Related Factors and a Threshold of the Maximum Neuron-Specific Enolase Value Affecting the Prognosis of Patients with Aneurysmal Subarachnoid Hemorrhage. Applied Bionics and Biomechanics, 2022, Article ID: 7596426. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kaste, M., Somer, H. and Konttinen, A. (1977) Brain-Type Creatine Kinase Isoenzyme. Occurrence in Serum in Acute Cerebral Disorders. Archives of Neurology, 34, 142-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kettunen, P. (1983) Subarachnoid Haemorrhage and Acute Heart Injury. Clinica Chimica Acta, 134, 123-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Kloss, R., Keller, H.E., Stober, T., et al. (1985) [Creatine Ki-nase BB Activity in the Serum of Patients with Cerebrovascular Diseases]. Der Nervenarzt, 56, 417-422.
|
|
[27]
|
Coplin, W.M., Longstreth Jr, W.T., Lam, A.M., et al. (1999) Cerebrospinal Fluid Creatine Kinase-BB Isoenzyme Activity and Outcome after Subarachnoid Hemorrhage. Archives of Neurology, 56, 1348-1352. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yang, Z. and Wang, K.K. (2015) Glial Fibrillary Acidic Protein: From Intermediate Filament Assembly and Gliosis to Neurobiomarker. Trends in Neurosciences, 38, 364-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Schiff, L., Hadker, N., Weiser, S. and Rausch, C. (2012) A Litera-ture Review of the Feasibility of Glial Fibrillary Acidic Protein as a Biomarker for Stroke and Traumatic Brain Injury. Molecular Diagnosis & Therapy, 16, 79-92. [Google Scholar] [CrossRef]
|
|
[30]
|
Katsanos, A.H., Makris, K., Stefani, D., et al. (2017) Plasma Glial Fi-brillary Acidic Protein in the Differential Diagnosis of Intracerebral Hemorrhage. Stroke, 48, 2586-2588. [Google Scholar] [CrossRef]
|
|
[31]
|
Gyldenholm, T., Hvas, C.L., Hvas, A.M. and Hviid, C.V.B. (2022) Serum Glial Fibrillary Acidic Protein (GFAP) Predicts Outcome after Intracerebral and Subarachnoid Hemorrhage. Neurological Sciences, 43, 6011-6019. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lewis, S.B., Wolper, R.A., Miralia, L., Yang, C. and Shaw, G. (2008) Detection of Phosphorylated NF-H in the Cerebrospinal Fluid and Blood of Aneurysmal Subarachnoid Hemor-rhage Patients. Journal of Cerebral Blood Flow and Metabolism, 28, 1261-1271. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kövesdi, E., Lückl, J., Bukovics, P., et al. (2010) Update on Protein Biomarkers in Traumatic Brain Injury with Emphasis on Clinical Use in Adults and Pediatrics. Acta Neurochirurgica, 152, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Helbok, R., Schiefecker, A., Delazer, M., et al. (2015) Cerebral Tau Is Elevated after Aneurysmal Subarachnoid Haemorrhage and Associated with Brain Metabolic Distress and Poor Functional and Cognitive Long-Term Outcome. Journal of Neurology, Neurosurgery, and Psychiatry, 86, 79-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Joswig, H., Korte, W., Früh, S., et al. (2018) Neurodegenerative Cerebrospinal Fluid Biomarkers Tau and Amyloid β Predict Functional, Quality of Life, and Neuropsychological Out-comes after Aneurysmal Subarachnoid Hemorrhage. Neurosurgical Review, 41, 605-614. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Provencio, J.J. (2013) Inflammation in Subarachnoid Hemorrhage and Delayed Deterioration Associated with Vasospasm: A Review. In: Zuccarello, M., Clark, J., Pyne-Geithman, G., Andaluz, N., Hartings, J. and Adeoye, O., Eds., Cerebral Vasospasm: Neurovascular Events after Subarachnoid Hem-orrhage, Springer, Vienna, 233-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Al-Mufti, F., Misiolek, K.A., Roh, D., et al. (2019) White Blood Cell Count Improves Prediction of Delayed Cerebral Ischemia following Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 84, 397-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Geraghty, J.R., Lung, T.J., Hirsch, Y., et al. (2021) Systemic Im-mune-Inflammation Index Predicts Delayed Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage. Neuro-surgery, 89, 1071-1079. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Gusdon, A.M., Savarraj, J.P.J., Shihabeddin, E., et al. (2021) Time Course of Peripheral Leukocytosis and Clinical Outcomes after Aneurysmal Subarachnoid Hemorrhage. Frontiers in Neurology, 12, Article 694996. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Ma, X., Lan, F. and Zhang, Y. (2021) Associations between C-Reactive Protein and White Blood Cell Count, Occurrence of Delayed Cerebral Ischemia and Poor Outcome following Aneurysmal Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Acta Neurologica Belgica, 121, 1311-1324. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Lv, S.Y., Wu, Q., Liu, J.P., et al. (2018) Levels of Interleukin-1β, Interleukin-18, and Tumor Necrosis Factor-α in Cerebrospinal Fluid of Aneurysmal Subarachnoid Hemorrhage Patients May Be Predictors of Early Brain Injury and Clinical Prognosis. World Neurosurgery, 111, e362-e373. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zeiler, F.A., Thelin, E.P., Czosnyka, M., et al. (2017) Cerebro-spinal Fluid and Microdialysis Cytokines in Aneurysmal Subarachnoid Hemorrhage: A Scoping Systematic Review. Frontiers in Neurology, 8, Article 379. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Simon, M. and Grote, A. (2021) Interleukin 6 and Aneurysmal Subarachnoid Hemorrhage. A Narrative Review. International Journal of Molecular Sciences, 22, Article 4133. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chou, S.H., Lo, E.H. and Ning, M. (2014) Plasma-Type Gelsolin in Subarachnoid Hemorrhage: Novel Biomarker Today, Therapeutic Target Tomorrow? Critical Care, 18, Article No. 101. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Kumar, M., Cao, W., Mcdaniel, J.K., et al. (2017) Plasma ADAMTS13 Ac-tivity and von Willebrand Factor Antigen and Activity in Patients with Subarachnoid Haemorrhage. Thrombosis and Haemostasis, 117, 691-699. [Google Scholar] [CrossRef]
|
|
[46]
|
Boluijt, J., Meijers, J.C.M., Rinkel, G.J.E. and Di Vergouwen, M. (2015) Hemostasis and Fibrinolysis in Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage: A Sys-tematic Review. Journal of Cerebral Blood Flow and Metabolism, 35, 724-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wan, H., Wang, Y., Ai, J., et al. (2018) Role of von Willebrand Factor and ADAMTS-13 in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Journal of Thrombosis and Haemostasis, 16, 1413-1422. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Bergström, A., Staalsø, J.M., Romner, B. and Olsen, N.V. (2014) Impaired Endothelial Function after Aneurysmal Subarachnoid Haemorrhage Correlates with Arginine: Asymmetric Dimethylarg-inine Ratio. British Journal of Anaesthesia, 112, 311-318. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Appel, D., Seeberger, M., Schwedhelm, E., et al. (2018) Asymmetric and Symmetric Dimethylarginines Are Markers of Delayed Cerebral Ischemia and Neurological Outcome in Patients with Subarachnoid Hemorrhage. Neurocritical Care, 29, 84-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Koch, M., Acharjee, A., Ament, Z., et al. (2021) Machine Learn-ing-Driven Metabolomic Evaluation of Cerebrospinal Fluid: Insights into Poor Outcomes after Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 88, 1003-1011. [Google Scholar] [CrossRef] [PubMed]
|