| [1] | Larmor, J. (1919) How Could a Rotating Body Such as the Sun Become a Magnet. Report of the British Association for the Advancement of Science, 159, 412. | 
                     
                                
                                    
                                        | [2] | Dormy, E., Jault, D. and Soward, A. (2002) A Super Rotating Shear Layer in Magnetohydrodynamic
Spherical Couette Flow. Journal of Fluid Mechanics, 452, 263-291. https://doi.org/10.1017/S0022112001006711
 | 
                     
                                
                                    
                                        | [3] | Merrill, R.T., McElhinny, M.W. and McFadden, P.L. (1998) The Magnetic Field of the Earth:
Paleomagnetism, the Core, and the Deep Mantle. Volume 63 of International Geophysics Series.
Academic Press, Cambridge, MA. | 
                     
                                
                                    
                                        | [4] | Fujita, H. and Kato, T. (1964) On the Navier-Stokes Initial Value Problem I. Archive for
Rational Mechanics and Analysis, 16, 269-315. https://doi.org/10.1007/BF00276188
 | 
                     
                                
                                    
                                        | [5] | Kato, T. (1984) Strong Lp-Solutions of the Navier-Stokes Equation in Rm, with Applications
to Weak Solutions. Mathematische Zeitschrift, 187, 471-480. https://doi.org/10.1007/BF01174182
 | 
                     
                                
                                    
                                        | [6] | Cannone, M. (1997) A Generalization of a Theorem by Kato on Navier-Stokes Equations.
Revista Matematica Iberoamericana, 13, 515-541. https://doi.org/10.4171/RMI/229
 | 
                     
                                
                                    
                                        | [7] | Koch, H. and Tataru, D. (2001) Well-Posedness for the Navier-Stokes Equations. Advances in
Mathematics, 157, 22-35. https://doi.org/10.1006/aima.2000.1937
 | 
                     
                                
                                    
                                        | [8] | Babin, A., Mahalov, A. and Nicolaenko, B. (1997) Regularity and Integrability of 3D Euler
and Navier-Stokes Equations for Rotating Fluids. Asymptotic Analysis, 15, 103-150. https://doi.org/10.3233/ASY-1997-15201
 | 
                     
                                
                                    
                                        | [9] | Babin, A., Mahalov, A. and Nicolaenko, B. (1999) Global Regularity of the 3D Rotating
Navier-Stokes Equations for Resonant Domains. Indiana University Mathematics Journal, 48,
1133-1176. https://doi.org/10.1512/iumj.1999.48.1856
 | 
                     
                                
                                    
                                        | [10] | Chemin, J.Y., Desjardins, B., Gallagher, I. and Grenier, E. (2006) Mathematical Geophysics:
An Introduction to Rotating Fluids and the Navier-Stokes Equations. Oxford University Press,
Oxford. https://doi.org/10.1093/oso/9780198571339.001.0001
 | 
                     
                                
                                    
                                        | [11] | Iwabuchi, T. and Takada, R. (2013) Global Solutions for the Navier-Stokes Equations in the
Rotational Framework. Mathematische Annalen, 357, 727-741. https://doi.org/10.1007/s00208-013-0923-4
 | 
                     
                                
                                    
                                        | [12] | Sun, J., Yang, M. and Cui, S. (2017) Existence and Analyticity of Mild Solutions for the 3D
Rotating Navier-Stokes Equations. Annali di Matematica Pura ed Applicata, 196, 1203-1229. https://doi.org/10.1007/s10231-016-0613-4
 | 
                     
                                
                                    
                                        | [13] | Koh, Y., Lee, S. and Takada, R. (2014) Dispersive Estimates for the Navier-Stokes Equations
in the Rotational Framework. Advances in Difference Equations, 19, 857-878. https://doi.org/10.57262/ade/1404230126
 | 
                     
                                
                                    
                                        | [14] | Konieczny, P. and Yoneda, T. (2011) On Dispersive Effect of the Coriolis Force for the Stationary
Navier-Stokes Equations. Journal of Differential Equations, 250, 3859-3873. https://doi.org/10.1016/j.jde.2011.01.003
 | 
                     
                                
                                    
                                        | [15] | Iwabuchi, T. and Takada, R. (2014) Global Well-Posedness and Ill-Posedness for the Navier-
Stokes Equations with the Coriolis Force in Function Spaces of Besov Type. Journal of Func-
tional Analysis, 267, 1321-1337. https://doi.org/10.1016/j.jfa.2014.05.022
 | 
                     
                                
                                    
                                        | [16] | Sun, J. and Cui, S. (2019) Sharp Well-Posedness and Ill-Posedness of the Three-Dimensional
Primitive Equations of Geophysics in Fourier-Besov Spaces. Nonlinear Analysis: Real World
Applications, 48, 445-465. https://doi.org/10.1016/j.nonrwa.2019.02.003
 | 
                     
                                
                                    
                                        | [17] | Duvaut, G. and Lions, J.L. (1972) Inequations en thermoelasticite et magnetohydrodynamique.
Archive for Rational Mechanics and Analysis, 46, 241-279. https://doi.org/10.1007/BF00250512
 | 
                     
                                
                                    
                                        | [18] | Sermange, M. and Temam, R. (1983) Some Mathematical Questions Related to the MHD
Equations. Communications on Pure and Applied Mathematics, 36, 635-664. https://doi.org/10.1002/cpa.3160360506
 | 
                     
                                
                                    
                                        | [19] | Zhai, X., Li, Y. and Yan, W. (2015) Global Well-Posedness for the 3-D Incompressible MHD
Equations in the Critical Besov Spaces. Communications on Pure and Applied Analysis, 14,
1865-1884. https://doi.org/10.3934/cpaa.2015.14.1865
 |