|
[1]
|
Li, H., Guan, Y., Liang, B., et al. (2022) Therapeutic Potential of MCC950, a Specific Inhibitor of NLRP3 Inflam-masome. European Journal of Pharmacology, 928, Article ID: 175091. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Abbate, A., Toldo, S., Marchetti, C., et al. (2020) Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circulation Research, 126, 1260-1280. [Google Scholar] [CrossRef]
|
|
[3]
|
Xiao, Y., Xu, W. and Su, W. (2018) NLRP3 Inflam-masome: A Likely Target for the Treatment of Allergic Diseases. Clinical & Experimental Allergy, 48, 1080-1091. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Swanson, K.V., Deng, M. and Ting, J.P. (2019) The NLRP3 Inflam-masome: Molecular Activation and Regulation to Therapeutics. Nature Reviews Immunology, 19, 477-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zangiabadi, S. and Abdul-Sater, A.A. (2022) Regulation of the NLRP3 Inflammasome by Posttranslational Modifications. The Journal of Immunology, 208, 286-292. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, W.J., Chen, S.J., Zhou, S.C., Wu, S.Z. and Wang, H. (2021) Inflammasomes and Fibrosis. Frontiers in Immunology, 12, Article 643149. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bleda, S., De Haro, J., Varela, C., et al. (2014) NLRP1 Inflam-masome, and Not NLRP3, Is the Key in the Shift to Proinflammatory State on Endothelial Cells in Peripheral Arterial Disease. International Journal of Cardiology, 172, E282-E284. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kelley, N., Jeltema, D., Duan, Y. and He, Y. (2019) The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International Journal of Molecular Sciences, 20, Article 3328. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, Y., Wang, H., Kouadir, M., Song, H.H. and Shi, F.S. (2019) Recent Advances in the Mechanisms of NLRP3 Inflammasome Activation and Its Inhibitors. Cell Death & Disease, 10, Article No. 128. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kayagaki, N., Wong, M.T., Stowe, I.B., et al. (2013) Noncanoni-cal Inflammasome Activation by Intracellular LPS Independent of TLR4. Science, 341, 1246-1249. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shi, J., Zhao, Y., Wang, Y., et al. (2014) Inflammatory Caspases Are Innate Immune Receptors for Intracellular LPS. Nature, 514, 187-192. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hagar, J.A., Powell, D.A., Aachoui, Y., et al. (2013) Cytoplasmic LPS Activates Caspase-11: Implications in TLR4- Independent Endotoxic Shock. Science, 341, 1250-1253. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Fisch, D., Bando, H., Clough, B., et al. (2019) Human GBP1 Is a Microbe-Specific Gatekeeper of Macrophage Apoptosis and Pyroptosis. The EMBO Journal, 38, e100926. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Vergallo, R. and Crea, F. (2020) Atherosclerotic Plaque Healing. The New England Journal of Medicine, 383, 846-857. [Google Scholar] [CrossRef]
|
|
[15]
|
Xiang, P., Blanchard, V. and Francis, G.A. (2022) Smooth Muscle Cell-Macrophage Interactions Leading to Foam Cell Formation in Atherosclerosis: Location, Location, Location. Fron-tiers in Physiology, 13, Article 921597. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sharma, B.R. and Kanneganti, T.D. (2021) NLRP3 Inflammasome in Cancer and Metabolic Diseases. Nature Immunology, 22, 550-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Wolf, D. and Ley, K. (2019) Immunity and Inflammation in Atherosclerosis. Circulation Research, 124, 315-327. [Google Scholar] [CrossRef]
|
|
[18]
|
Janoudi, A., Shamoun, F.E., Kalavakunta, J.K. and Abela, G.S. (2016) Cholesterol Crystal Induced Arterial Inflammation and Destabilization of Atherosclerotic Plaque. European Heart Journal, 37, 1959-1967. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kim, S., Cho, W., Kim, I., et al. (2020) Oxidized LDL Induces Vi-mentin Secretion by Macrophages and Contributes to Atherosclerotic Inflammation. Journal of Molecular Medicine, 98, 973-983. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
De Miguel, C., Pelegrín, P., Baroja-Mazo, A. and Cuevas, S. (2021) Emerging Role of the Inflammasome and Pyroptosis in Hypertension. International Journal of Molecular Scienc-es, 22, Article 1064. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wan, Z., Fan, Y., Liu, X., et al. (2019) NLRP3 Inflammasome Pro-motes Diabetes-Induced Endothelial Inflammation and Atherosclerosis. Diabetes, Metabolic Syndrome and Obesity, 12, 1931-1942. [Google Scholar] [CrossRef]
|
|
[22]
|
Hoseini, Z., Sepahvand, F., Rashidi, B., et al. (2018) NLRP3 In-flammasome: Its Regulation and Involvement in Atherosclerosis. Journal of Cellular Physiology, 233, 2116-2132. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sies, H. (2017) Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biology, 11, 613-619. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kattoor, A.J., Pothineni, N.V.K., Palagiri, D. and Mehta, J.L. (2017) Oxidative Stress in Atherosclerosis. Current Atherosclerosis Reports, 19, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Su, L.J., Zhang, J.H., Gomez, H., et al. (2019) Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxidative Medicine and Cellular Longev-ity, 2019, Article ID: 5080843. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, H., Horke, S. and Förstermann, U. (2013) Oxidative Stress in Vas-cular Disease and Its Pharmacological Prevention. Trends in Pharmacological Sciences, 34, 313-319. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Forman, H.J. and Zhang, H. (2021) Targeting Oxidative Stress in Disease: Promise and Limitations of Antioxidant Therapy. Nature Reviews Drug Discovery, 20, 689-709. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Glavind, J., Hartmann, S., Clemmesen, J., Jessen, K.E. and Dam, H. (1952) Studies on the Role of Lipoperoxides in Human Pathology. II. The Presence of Peroxidized Lipids in the Ath-erosclerotic Aorta. Acta Pathologica Microbiologica Scandinavica, 30, 1-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kim, D.H., Meza, C.A., Clarke, H., et al. (2020) Vitamin D and Endothelial Function. Nutrients, 12, Article 575. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wu, S. and Zou, M.H. (2020) AMPK, Mitochondrial Function, and Car-diovascular Disease. International Journal of Molecular Sciences, 21, Article 4987. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Radi, R. (2018) Oxygen Radicals, Nitric Oxide, and Peroxynitrite: Re-dox Pathways in Molecular Medicine. Proceedings of the National Academy of Sciences of the United States of America, 115, 5839-5848. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Mikhed, Y., Daiber, A. and Steven, S. (2015) Mitochondrial Oxida-tive Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. International Journal of Molecular Sciences, 16, 15918-15953. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Feng, C., Chen, Q., Fan, M., et al. (2019) Platelet-Derived Microparti-cles Promote Phagocytosis of Oxidized Low-Density Lipoprotein by Macrophages, Potentially Enhancing Foam Cell Formation. Annals of Translational Medicine, 7, Article 477. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, W. and Kang, P.M. (2020) Oxidative Stress and Antioxidant Treatments in Cardiovascular Diseases. Antioxidants, 9, Ar-ticle 1292. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Fu, Y., Liu, J.W., Wu, J., et al. (2022) Inhibition of Sema-phorin-3a Alleviates Lipopolysaccharide-Induced Vascular Injury. Microvascular Research, 142, Article ID: 104346. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Cuadrado, A., Manda, G., Hassan, A., et al. (2018) Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacological Reviews, 70, 348-383. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kuang, Y., Zhang, Y., Xiao, Z., et al. (2020) Protective Effect of Di-methyl Fumarate on Oxidative Damage and Signaling in Cardiomyocytes. Molecular Medicine Reports, 22, 2783-2790. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Luo, M., Sun, Q., Zhao, H., et al. (2019) The Effects of Dimethyl Fumarate on Atherosclerosis in the Apolipoprotein E-Deficient Mouse Model with Streptozotocin-Induced Hyperglyce-mia Mediated by the Nuclear Factor Erythroid 2-Related Factor 2/Antioxidant Response Element (Nrf2/ARE) Signaling Pathway. Medical Science Monitor, 25, 7966-7975. [Google Scholar] [CrossRef]
|